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ABSTRACT
On many social networking web sites such as Facebook and Twit-
ter, resharing or reposting functionality allows users to share oth-
ers’ content with their own friends or followers. As content is
reshared from user to user, large cascades of reshares can form.
While a growing body of research has focused on analyzing and
characterizing such cascades, a recent, parallel line of work has
argued that the future trajectory of a cascade may be inherently un-
predictable. In this work, we develop a framework for addressing
cascade prediction problems. On a large sample of photo reshare
cascades on Facebook, we find strong performance in predicting
whether a cascade will continue to grow in the future. We find that
the relative growth of a cascade becomes more predictable as we
observe more of its reshares, that temporal and structural features
are key predictors of cascade size, and that initially, breadth, rather
than depth in a cascade is a better indicator of larger cascades. This
prediction performance is robust in the sense that multiple distinct
classes of features all achieve similar performance. We also dis-
cover that temporal features are predictive of a cascade’s eventual
shape. Observing independent cascades of the same content, we
find that while these cascades differ greatly in size, we are still able
to predict which ends up the largest.
Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining
General Terms: Experimentation, Measurement.
Keywords: Information diffusion, cascade prediction, contagion.

1. INTRODUCTION
The sharing of content through social networks has become an

important mechanism by which people discover and consume in-
formation online. In certain instances, a photo, link, or other piece
of information may get reshared multiple times: a user shares the
content with her set of friends, several of these friends share it with
their respective sets of friends, and a cascade of resharing can de-
velop, potentially reaching a large number of people. Such cas-
cades have been identified in settings including blogging [1, 13,
21], e-mail [12, 22], product recommendation [20], and social sites
such as Facebook and Twitter [9, 18]. A growing body of research

.

has focused on characterizing cascades in these domains, including
their structural properties and their content.

In parallel to these investigations, there has been a recent line
of work adding notes of caution to the study of cascades. These
cautionary notes fall into two main genres: first, that large cascades
are rare [11]; and second, that the eventual scope of a cascade may
be an inherently unpredictable property [28, 31]. The first concern
— that large cascades are rare — is a widespread property that has
been observed quantitatively in many systems where information
is shared. The second concern is arguably more striking, but also
much harder to verify quantitatively: to what extent is the future
trajectory of a cascade predictable; and which features, if any, are
most useful for this prediction task?

Part of the challenge in approaching this prediction question is
that the most direct ways of formulating it do not fully address the
two concerns above. Specifically, if we are presented with a short
initial portion of a cascade and asked to estimate its final size, then
we are faced with a pathological prediction task, since almost all
cascades are small. Alternately, if we radically overrepresent large
cascades in our sample, we end up studying an artificial setting
that does not resemble how cascades are encountered in practice.
A set of recent initial studies have undertaken versions of cascade
prediction despite these difficulties [19, 23, 26, 29], but to some
extent they are inherent in these problem formulations.

These challenges reinforce the fact that finding a robust way to
formulate the problem of cascade prediction remains an open prob-
lem. And because it is open, we are missing a way to obtain a
deeper, more fundamental understanding of the predictability of
cascades. How should we set up the question so that it becomes
possible to address these issues directly, and engage more deeply
with arguments about whether cascades might, in the end, be inher-
ently unpredictable?

The present work: Cascade growth prediction. In this paper,
we propose a new approach to the prediction of cascades, and show
that it leads to strong and robust prediction results. We are moti-
vated by a view of cascades as complex dynamic objects that pass
through successive stages as they grow. Rather than thinking of
a cascade as something whose final endpoint should be predicted
from its initial conditions, we think of it as something that should be
tracked over time, via a sequence of prediction problems in which
we are constantly seeking to estimate the cascade’s next stage from
its current one.

What would it mean to predict the “next stage” of a cascade? If
we think about all cascades that reach size k, there is a distribution
of eventual sizes that these cascades will reach. Then the distribu-
tion of cascade sizes has a median value f(k) ≥ k. This number
f(k) is thus the “typical” final size for cascades that reached size
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at least k. Hence, the most basic way to ask about a cascade’s next
stage of growth, given that it currently has size k, is to ask whether
it reaches size f(k).

We therefore propose the following cascade growth prediction
problem: given a cascade that currently has size k, predict whether
it grow beyond the median size f(k). (As we show later, the pre-
diction problem is equivalent to asking: given a cascade of size k,
will the cascade double its size and reach at least 2k nodes?) This
implicitly defines a family of prediction problems, one for each k.
We can thus ask how cascade predictability behaves as we sweep
over larger and larger values of k. (There are natural variants and
generalizations in which we ask about reaching target sizes other
than the median f(k).) This problem formulation has a number
of strong advantages over standard ways of trying to define cas-
cade prediction. First, it leads to a prediction problem in which the
classes are balanced, rather than highly unbalanced. Second, it al-
lows us to ask for the first time how the predictability of a cascade
varies over the range of its growth from small to large. Finally, it
more closely approximates the real tasks that need to be solved in
applications for managing viral content, where many evolving cas-
cades are being monitored, and the question is which are likely to
grow significantly as time moves forward.

For studying cascade growth prediction, it is important to work
with a system in which the sharing and resharing of information
is widespread, the complete trajectories of many cascades—both
large and small—are observable, and the same piece of content
shared separately by many people, so that we can begin to con-
trol for variation in content. For this purpose, we use a month of
complete photo-resharing data from Facebook, which provides a
rich ecosystem of shared content exhibiting all of these properties.

In this setting, we focus on several categories of questions:

(i) How high an accuracy can we achieve for cascade growth
prediction? If we cannot improve on baseline guessing, then
this would be evidence for the inherent unpredictably of cas-
cades. But if we can significantly improve on this baseline,
then there is a basis for non-trivial prediction. In the latter
case, it also becomes important to understand the features
that make prediction possible.

(ii) Is growth prediction more tractable on small cascades or large
ones? In other words, does the future behavior of a cascade
become more or less predictable as the cascade unfolds?

(iii) Beyond just the growth of a cascade, can we predict its “shape”
— that is, its network structure?

Summary of results. Given the challenges in predicting cascades,
we find surprisingly strong performance for the growth prediction
problem. Moreover, the performance is robust in the sense that
multiple distinct classes of features, including those based on time,
graph structure, and properties of the individuals resharing, can
achieve accuracies well above the baseline. Cascades whose ini-
tial reshares come quickly are more likely to grow significantly;
and from a structural point of view, breadth rather than depth in the
resharing tree is a better predictor of significant growth.

We investigate the performance of growth prediction as a func-
tion of the size of the cascade so far — when we want to predict
the growth of a cascade of size k, how does our accuracy depend
on k? It is not a priori clear whether accuracy should increase or
decrease as a function of k, since for any value of k the challenge
is to determine what the cascade will do in the future. Seeing more
of the cascade (larger k) does not make the problem easier, as it
also involves predicting “farther” into the future (i.e., whether the
cascade will reach size at least 2k). We find that accuracy increases

with k, so that it is possible to achieve better performance on large
cascades than small ones. The features that are most significant for
prediction change with k as well, with properties of the content and
the original author becoming less important, and temporal features
remaining relatively stable.

We also consider a related question: how much of a cascade do
we need to see in order to obtain good performance? Specifically,
suppose we want to predict the growth of a cascade of size at least
R, but we are only able to see the first k < R nodes in the cascade.
How does prediction performance depend on k, and in particular, is
there a “sweet spot” where a relatively small value of k gives most
of the performance benefits? We find in fact that there is no sweet
spot: performance essentially climbs linearly in k, all the way up to
k = R. Perhaps surprisingly, more information about the cascade
continues to be useful even up to the full snapshot of size R.

In addition to growth, we also study how well we can predict
the eventual “shape” of the cascade, using metrics for evaluating
tree structures as a numerical measure of the shape. We obtain
performance significantly above baseline for this task as well; and
perhaps surprisingly, multiple classes of features including tempo-
ral ones perform well for this task, despite the fact that the quantity
being predicted is a purely structural one.

One of the compelling arguments that originally brought the is-
sue of inherent unpredictability onto the research agenda was a
striking experiment by Salganik, Dodds, and Watts, in which they
showed that the same piece of content could achieve very different
levels of popularity in separate independent settings [28]. Given
the richness of our data, we can study a version of this issue here
in which we can control for the content being shared by analyzing
many cascades all arising from the sharing of the same photo. As
in the experiment of Salganik et al., we find that independent re-
sharings of the same photo can generate cascades of very different
sizes. But we also show that this observation can be compatible
with prediction: after observing small initial portions of these dis-
tinct cascades for the same photo, we are able to predict with strong
performance which of the cascades will end up being the largest. In
other words, our data shows wide variation in cascades for the same
content, but also predictability despite this variation.

Overall, our goal is to set up a framework in which prediction
questions for cascades can be carefully analyzed, and our results
indicate that there is in fact a rich set of questions here, pointing to
important distinctions between different types of features charac-
terizing cascades, and between the essential properties of large and
small cascades.

2. RELATED WORK
Many papers have analyzed and cataloged properties of empiri-

cally observed information cascades, while others have considered
theoretical models of cascade formation in networks. Most relevant
to our work are those which focus on predicting the future popu-
larity of a given piece of content. These studies have proposed rich
sets of features for prediction, which we discuss later in Section 3.2.

Much prior work aims to predict the volume of aggregate activity
— the total number of up-votes on Digg stories [29], total hourly
volume of news phrases [34], or total daily hashtag use [23]. At the
other end of the spectrum, research has focused on individual user-
level prediction tasks: whether a user will retweet a specific tweet
[26] or share a specific URL [10]. Rather than attempt to predict
aggregate popularity or individual behavior in the next time step,
we instead look at whether an information cascade grows over the
median size (or doubles in size, as we later show).

Research on communities defined by user interests [3] or hash-
tag content [27] has also looked at a notion of growth, predicting



whether a group will increase in size by a given amount. Neverthe-
less, these focused on groups of already non-trivial size, and their
growth predicted without an explicit internal cascade topology, and
without tracking predictability over different size classes.

Several papers focus on predictions after having observed a cas-
cade for a given fixed time frame [19, 23, 30]. In contrast, rather
than studying specific time slices, we continuously observe the cas-
cade over its entire lifetime and attempt to understand how predic-
tive performance varies as the cascade develops. Moreover, our
methodology does not penalize slowly but persistently growing cas-
cades. Thus, we predict the size and the structure after having ob-
served a certain number of initial reshares.

Many studies consider the cascade prediction task as a regres-
sion problem [6, 19, 29, 30] or a binary classification problem with
large bucket sizes [16, 17, 19]. The danger with these approaches
is that they are biased towards studying extremely large but also ex-
tremely rare cascades, bypassing the whole issue about the general
predictability of cascades. For example, research has specifically
focused on content and users that create extremely large cascades,
such as popular hashtags [15, 33] and very popular users [9, 14],
which has led to criticism that cascades may only be predictable
after they have already grown large [31]. While it is useful to un-
derstand the dynamics of extremely popular content, such content
is also very rare. Thus, we rather seek to understand predictability
along cascade’s entire lifetime. We consider cascades that have as
few as five reshares, and introduce a classification task which is not
skewed towards very large cascades.

3. PREDICTING CASCADE GROWTH
To examine the cascade growth prediction problem, we first de-

fine and motivate our experimental setup and the feature sets used,
then report our prediction results with respect to different k.

3.1 Experimental setup
Mechanics of information passing on Facebook. We focus on
content consisting of posts the author has designated as public,
meaning that anyone on Facebook is eligible to view it, and we
further restrict our attention to content in the form of photos, which
comprise the majority of reshare cascades on Facebook [9]. Such
posts are then distributed by Facebook’s News Feed, typically at
first to users who are either friends of the poster or who subscribe
to their content, e.g. as followers. Each post is accompanied by a
“share” link that allows friends and followers to “reshare” the post
with her own friends and followers, thus expanding the set of users
exposed to the content. This explicit sharing mechanism creates in-
formation cascades, starting with the root node (user or page) that
originally created the content, and consisting of all subsequent re-
shares of that content.

Figure 1 illustrates the process with an example: a node v0 posts
a public photo, seen by v0’s friends and followers in their News
Feeds. Friends v1 and v3 then share the photo with their own
friends. This way the photo propagates over the edges of the Face-
book network and creates an information cascade. We represent the
cascade graph as Ĝ, and the induced subgraph of all photo shar-
ers, including all friendship or follow links between them as G′.
Notice that some users (ex. v5) are exposed via multiple sources
(v0, v1, v3, v4).

An important issue for our understanding of reshare cascades
is the following distinction: content can be produced by users —
individual Facebook accounts whose primary audience consists of
friends and any subscribers the individual has — and it can also be
produced by pages, which correspond to the Facebook accounts of

Figure 1: An information cascade represented by solid edges on a
graphG, starting at v0 (Ĝ). Dashed lines indicate friendship edges;
the edges between resharers make up the friend subgraph G′.

Figure 2: The complementary cumulative distribution (CCDF) of
cascade size (left) and structural virality measured by using the
Wiener index (right).

companies, brands, celebrities, and other highly visible public en-
tities. In the common parlance around cascades, reshared content
originally produced by a user is often informally viewed as more
“organic,” developing a following in a more bottom-up way. In
contrast, reshared content from pages is seen as more top-down,
and generally broadcast via News Feed to a larger set of initial
followers. A natural question, and a theme that will run through
several analyses in the paper, is to understand if these distinctions
carry over to the properties we study here: do user-initiated cas-
cades differ in their predictability and their underlying structure
from page-initiated cascades?
Dataset description. We sampled our anonymized dataset from
photos uploaded to Facebook in June 2013 and observed any re-
shares occurring within 28 days of initial upload. The dataset only
includes photos posted publicly (viewable by anyone), and not deleted
during the observation period. Further, we exclude photos with
fewer than five reshares as is required by the prediction tasks de-
scribed below. We constructed diffusion trees first by taking the ex-
plicit cascade, e.g. C clicking “share" on B’s “share" of A’s photo
forms the cascade A → B → C. However, it is possible that
user C clicked on user B’s share, and then directly reshared from
A. Since we want to know how the information actually flowed in
the network, we reconstruct the path A→ B → C based on click,
impression, and friend/follower data [9].

Figure 2 begins to show how photos uploaded by pages generate
cascades that differ from those uploaded by users. In our dataset,
81% of cascades are initiated by pages. Figure 2 shows the cas-
cade size distribution for pages, users, and the two combined. Page
cascades are typically larger than user cascades, e.g., 11% of page
cascades reach at least 100 reshares, while only 2% of user cas-
cades do, though both follow heavy tailed distributions. Fitting
power-law curves to their tails, we observe power-law exponents
of α equal to 2.2, 2.1, and 2.1 for user, page, and both, respectively
(xmin = 10, 2000, 2000).

In addition to cascade growth, we quantify the shape of a cascade
using the Wiener index, defined as the average distance between all



(a) d = 1.98 (b) d = 2.47 (c) d = 14.4

Figure 3: Cascades with a low Wiener index d resemble star graphs,
while those with a high index appear more viral (the root is red).

pairs of nodes in a cascade. Recent work has proposed the Wiener
index as a measure of the structural virality of a cascade [2]. Fig-
ure 3 shows examples of cascades with varying Wiener index val-
ues. Intuitively, a cascade with low structural virality has most
of its distribution following from a small number of hub nodes,
while a cascade with high virality will have many long paths. Fig-
ure 2 shows the distribution of cascade virality (as measured by
Wiener index) in our dataset, which, as we saw with cascade size,
follows a heavy-tailed distribution. While user cascades are typi-
cally smaller than page cascades in our dataset, they tend to have
greater structural virality, supporting the intuition that the structure
of user-initiated cascades is richer and deeper than that of page-
initiated cascades.
Defining the cascade growth prediction problem. Our aim in
this paper is to study how well cascades can be predicted. More-
over, we are interested in understanding how various aspects of the
prediction task affect the predictive performance.

There are several formulations of the task. If we were to define
the task as a regression problem, predictions may be skewed to-
wards large cascades, as cascade size follows a heavy-tailed distri-
bution (Figure 2(right)). Similarly, if we define it as a classification
problem of predicting whether a cascade reaches a specific size, we
may end up with unbalanced classes, and an overrepresentation of
large cascades. Also, if we simply observed a small initial portion
of a cascade, and predict its future size, the problem is pathological
as almost all cascades are small. And, if we only varied the ini-
tial period of observation, the task of predicting whether a cascade
reaches a certain size gets easier as we observe more of it.

To remedy these issues, we define a classification task that does
not suffer from these deficiencies. We consider a binary classifica-
tion problem where we observe the first k reshares of a cascade and
predict whether the eventual size of a cascade reaches the median
size of all the cascades with at least k reshares, f(k). This allows
us to study how cascade predictibility varies with k. As exactly
half the cascades reach a size greater than the median by definition,
random guessing achieves accuracy of 50%.

Interestingly, the question of whether the cascade will reach f(k)
is equivalent to that of whether a cascade will double in size. This
follows directly from the fact that cascade size distribution follows
a power-law with exponent α ≈ 2. Consider a power-law distribu-
tion on the interval (xmin,∞) with a power-law exponent α ≈ 2.
Then the median f(x) of this distribution is 2 · xmin, as demon-
strated by the following calculation:∫ f(x)

xmin

α− 1

xmin

(
x

xmin

)−α
dx =

1

2
⇒ f(x) = 2

1
α−1 xmin = 2xmin

As we examine cascades of size greater than k = xmin, the
median size of these cascades is thus 2 · k from this derivation. In
each of our prediction tasks, we observe that this is indeed true.
Methods used for learning. Our general methodology for the cas-
cade prediction problem will be to represent a cascade by a set of

features and then use machine learning classifiers to predict its fu-
ture size. We used a variety of learning methods, including linear
regression, naive Bayes, SVM, decision trees and random forests.
However, we primarily report performance of the logistic regres-
sion classifier for ease of comparison. In many cases, the perfor-
mance of most classifiers was similar, although non-linear classi-
fiers such as random forests usually performed slightly better than
linear classifiers such as logistic regression. In all cases, we per-
formed 10-fold cross validation and report the classification accu-
racy, F1 score, and area under the ROC curve (AUC).

3.2 Factors driving cascade growth
We proceed by describing factors that contribute to the growth

and spreading of cascades. We group these factors into five classes:
properties of the content that is spreading, features of the original
poster, features of the resharer, structural features of the cascade,
and temporal characteristics of the cascade. Table 1 contains a de-
tailed list of features.
Content features. The first natural factor contributing to the abil-
ity of the cascade to spread is the content itself [7]. On Twitter,
tweet content and in particular, hashtags, are used to generate con-
tent features [23, 30], and identify topics affecting retweet like-
lihood [26]. LDA topic models have also been incorporated into
these prediction tasks [16], and human raters employed to infer the
interestingness of content [5, 26]. In our work, we relied on a lin-
ear SVM model, trained using image GIST descriptors and color
histogram features, to assign likelihood scores of a photo being
a closeup shot, taken indoors or outdoors, synthetically generated
(e.g., screenshots or pure text vs. photographs), or contained food,
a landmark, person, nature, water, or overlaid text (e.g., a meme).
We also analyzed words in the caption accompanying an image for
positive sentiment, negative sentiment, and sociality [17, 25].

Nevertheless, while content features affected the performance of
structural and temporal features, we find that they are weak predic-
tors of how widely disseminated a piece of content would become.
Original poster/resharer features. Some prior work focused on
features of the root note in a cascade to predicting the cascade’s
evolution, finding that content from highly-connected individuals
reaches larger audiences, and thus spreads further. Users with large
follower counts on Twitter generated the largest retweet cascades [5].
Separately, features of an author of a tweet were shown to be more
important than features of the tweet itself [26]. In many Twitter
studies predicting cascade size or popularity, a user’s number of
followers ranks among the top, if not the most, important predictor
of popularity [5, 23].

Other features of the root node have also been studied, such as
the number of prior retweets of a user’s posts [5, 16], and how
many Twitter lists a user was included in [26]. The number of @-
mentions of a Twitter user was used to predict whether, and how
soon a tweet would be retweeted, how many users would directly
retweet, and the depth a cascade would reach [33]. Still, [8] found
that various measures of a user’s popularity are not very correlated
with his or her influence.

We capture the intuition behind these factors by defining demo-
graphic as well as network features of the original poster as well
as the features of the users who reshared the content so far. We
use Facebook’s distinction of users (individuals) and pages (enti-
ties representing an interest) to further distinguish different origin
types, in addition to the influence features mentioned above.
Structural features of the cascade. Networks provide the sub-
strate through which information spreads, and thus their structure
influences the path and reach of the cascade. As illustrated in Fig-
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Figure 4: Using logistic regression, we are able to predict with near
80% accuracy whether the size of a cascade will reach the median
(10) after observing the first k =5 reshares.

ure 1, we generate features from both the graph of the first k re-
shares (Ĝ), as well as the induced friend subgraph of the first k
resharers (G′). Whereas the reshare graph Ĝ describes the actual
spread of a cascade, the friend subgraph G′ provides information
about the social ties between these initial resharers. The social
graph G allows us to compute the potential reach of these reshares.

Previous work considered the network structure of the underly-
ing graph in inferring the virality of content [32], with highly viral
items spreading across communities. We use the density of the ini-
tial reshare cascade (subgraph ′k) and the proximity to the root node
(orig_connectionsk, did_leave) as proxies for whether an item
is spreading primarily within a community or across many. One
can also look outside the network between resharers, and count the
number of users reachable via all friendship and follow edges of the
first k users (border_nodesk). This relates to total number of ex-
posed users, and has been demonstrated to be an important feature
in predicting Twitter hashtag popularity [23].

As we can trace information flow on Facebook exactly, we need
not worry about independent entry points influencing a cascade [6,
24]; external influence instead allows us to investigate multiple in-
dependent cascades arising from the same content (see Section 5.1).
Temporal features. Properties related to the “speed” of the cas-
cade (e.g., timek) were shown to be the most important features in
predicting thread length on Facebook [4], and are a primary mech-
anism in predicting online content popularity [29]. Moreover, as
the speed of diffusion changes over time, this may have a strong
effect on the ability of the cascade to continue spreading through
the network [33].

We characterize a number of temporal properties of cascade dif-
fusion (see Table 1). In particular, we measure the change in the
speed of reshares (time ′′1..k), compare the differences between the
speed in the first and second half of the measurement period (time ′1..k/2,
time ′k/2..k), and qunatify the number of users who were exposed
to the cascade per time unit (views ′1..k−1, k).

3.3 Predicting cascade growth
To illustrate the general performance of the features described in

the previous section we consider a simple prediction task, where
we observe the first 5 reshares of the cascade and want to pre-
dict whether it will reach the median cascade size (or equivalently,
whether it will double and be reshared at least 10 times). For the
experiment we use a set ofNc = 150,572 photos, where each photo
was shared at least 5 times. The total number of reshares of these
photos was Nr = 9,233,300.
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Figure 5: If we observe the first k reshares of a cascade, and want
to predict whether the cascade will double in size, our prediction
improves as we observe more of it.

Figure 4 shows logistic regression performance using all features
from Table 1. For this task, random guessing would obtain a perfor-
mance of 0.5, while our method achieves surprisingly strong per-
formance: classification accuracy of 0.795 and AUC of 0.877. If
we relax the task and instead of predicting above vs. below median
size, we predict top vs. bottom quartile (top 25% vs. bottom 25%)
the accuracy rises even further to 0.926, and the AUC to 0.976.

Overall, while each feature set is individually significantly bet-
ter than predicting at random, it is the set of temporal features
that outperforms all other individual feature sets, obtaining perfor-
mance scores within 0.025 of those obtained when using all fea-
tures. To understand if we could do well without temporal features,
we trained a classifier which excluded them and were still able to
obtain reasonable performance even without these features. This is
especially useful when one knows through whom information was
passed, but not when it was passed. The lack of reliance on any in-
dividual set of features demonstrates that the predictions are robust.

Studied individually, we also find that temporal features gener-
ally performed best, followed by structural features. The reshare
rate in the second half (time ′k/2..k) was most predictive, attaining
accuracy of 0.73. This was followed by the rate of user views of the
original photo, views ′0,k, and the time elapsed between the origi-
nal post and fifth reshare, time5 (both 0.72). In fact, timek+1 is
always more accurate than timek. The most accurate structural
features were did_leave and outdeg(v0) (both 0.65). We examine
individual feature importance in more detail later.

3.4 Predictability and the observation window
of size k

It is also natural to ask whether cascades get more or less pre-
dictable as we observe more of the initial growth of a cascade.
One may think that observing more of the cascade may allow us
to extrapolate its future growth better; on the other hand, additional
observed reshares may also introduce noise and uncertainty in the
future growth of the cascade. Note that the task does not get easier
as we observe more of the cascade, as we are predicting whether
the cascade will reach size 2k (or equivalently, the median) given
that we have seen k reshares so far.

Figure 5 shows that the predictive performance of whether a cas-
cade doubles in size increases as a function of the number of ob-
served reshares k. In other words, it is easier to predict whether a
cascade that has reached 25 reshares will get another 25, than to
predict whether a cascade that has reached 5 reshares will obtain
an additional 5. Thus, the prediction accuracy for larger cascades
is above the already high accuracy for smaller values of k. The
change in the F1 score and AUC also follow a very similar trend.



Content Features
scorefood/nature/... The probability of the photo having a specific feature (food, overlaid text, landmark, nature, etc.)
is_en Whether the photo was posted by an English-speaking user or page
has_caption Whether the photo was posted with a caption
liwcpos/neg/soc Proportion of words in the caption that expressed positive or negative emotion, or sociality, if English

Root (Original Poster) Features
views0, k Number of users who saw the original photo until the kth reshare was posted
orig_is_page Whether the original poster is a page
outdeg(v0) Friend, subscriber or fan count of the original poster
age0 Age of the original poster, if a user
gender0 Gender of the original poster, if a user
fb_age0 Time since the original poster registered on Facebook, if a user
activity0 Average number of days the original poster was active in the past month, if a user

Resharer Features
views1..k−1, k Number of users who saw the first k − 1 reshares until the kth reshare was posted
pagesk Number of pages responsible for the first k reshares, including the root, or

∑k
i=0 1{vi is a page}

friends
avg/90p
k Average or 90th percentile friend count of the first k resharers, or 1

k

∑k
i=1 outdeg friends(vi)1{vi is a user}

fans
avg/90p
k Average or 90th percentile fan count of the first k resharers, or 1

k

∑k
i=1 outdeg(vi)1{vi is a page}

subscribers
avg/90p
k Average or 90th percentile subscriber count of the first k resharers, or 1

k

∑k
i=1 outdegsubscriber (vi)1{vi is a user}

fb_agesavg/90pk Average or 90th percentile time since the first k resharers registered on Facebook, or 1
k

∑k
i=1 fb_agei

activities
avg/90p
k Average number of days the first k resharers were active in July, or 1

k

∑k
i=1 activityi

ages
avg/90p
k Average age of the first k resharers, or 1

k

∑k
i=1 agei

femalek Number of female users among the first k resharers, or
∑k
i=1 1{gender i is female}

Structural Features
outdeg(vi) Connection count (sum of friend, subscriber and fan counts) of the ith resharer (or out-degree of vi on G = (V,E))
outdeg(v′i) Out-degree of the ith reshare on the induced subgraph G′ = (V ′, E′) of the first k resharers and the root
outdeg(v̂i) Out-degree of the ith reshare on the reshare graph Ĝ = (V̂ , Ê) of the first k reshares
orig_connectionsk Number of first k resharers who are friends with, or fans of the root, or |{vi | (v0, vi) ∈ E, 1 ≤ i ≤ k}|
border_nodesk Total number of users or pages reachable from the first k resharers and the root, or |{vi | (vi, vj) ∈ E, 0 ≤ i, j ≤ k}|
border_edgesk Total number of first-degree connections of the first k resharers and the root, or |{(vi, vj) | (vi, vj) ∈ E, 0 ≤ i, j ≤ k}|
subgraph ′k Number of edges on the induced subgraph of the first k resharers and the root, or |{(vi, vj) | (vi, vj) ∈ E′, 0 ≤ i, j ≤ k}|
depth ′k Change in tree depth of the first k reshares, or minβ

∑k
i=1(depthi − βi)2

depths
avg/90p
k Average or 90th percentile tree depth of the first k reshares, or 1

k

∑k
i=1 depthi

did_leave Whether any of the first k reshares are not first-degree connections of the root

Temporal Features
timei Time elapsed between the original post and the ith reshare

time′
1..k/2

Average time between reshares, for the first k/2 reshares, or 1
k/2−1

∑k/2−1
i=1 (timei+1 − timei)

time′
k/2..k

Average time between reshares, for the last k/2 reshares, or 1
k/2−1

∑k−1
i=k/2

(timei+1 − timei)

time′′1..k Change in the time between reshares of the first k reshares, or minβ
∑k−1
i=1 (timei+1 − timei)− βi)2

views′0,k Number of users who saw the original photo, until the kth reshare was posted, per unit time, or
views0, k
timek

views′1..k−1, k Number of users who saw the first k − 1 reshares, until the kth reshare was posted, per unit time, or
views1..k−1,k

timek

Table 1: List of features used for learning. We compute these features given the cascade until the kth reshare.

Overall, these results demonstrate that observing more of the
cascade, while also predicting “farther” into the future, is easier
than observing a cascade early in its life and predicting what it will
do next (i.e., k = 5 vs. k = 25).
Fixing the minimum cascade size R. In the previous version of
the task, cascades are required only to have at least k reshares.
Thus, the set of cascades changes with k. Here, we examine a
variation of this task, where we compose a dataset of cascades that
have at leastR reshares. We observe the first k (k ≤ R) reshares of
the cascade and aim to predict whether the cascade will grow over
the median size (over all cascades of size ≥ R). As we increase

k, the task gets easier as we observe more of the cascade and the
predicted quantity does not change.

With the task, we find that performance increases linearly with
k up to R, or that there is no “sweet spot” or region of diminishing
returns (p < 0.05 using a Harvey-Collier test). For example, the
top-most line in Figure 6 shows that when each observed cascade
has obtained 100 or more reshares, performance increases linearly
as more of the cascade is observed. This demonstrates that more
information is always better: the greater the number of observed
reshares, the better the prediction.

However, Figure 6 also shows that larger cascades are less pre-



Figure 6: Knowing that a cascade obtains at least R reshares, pre-
diction performance increases linearly with k, k ≤ R. However,
differentiating among cascades with large R also becomes more
difficult.

dictable than smaller cascades. For example, predicting whether
cascades with 1,000 to 2,000 reshares grow large is significantly
more difficult than predicting cascades of 100 to 200 reshares. This
shows that once one knows that a cascade will grow to be large,
knowing the characteristics of the very beginning of its spread is
less useful for prediction.

3.5 Changes in feature importance
We now examine how feature importance changes as more and

more of the cascade is observed. In this experiment, we compute
the value of the feature after observing first k reshares and mea-
sure the correlation coefficient of the feature value with the log-
transformed number of reshares (or cascade size).

Figure 7 shows the results for the five feature types. We summa-
rize the results by the following observations:

• Correlations of averages increase with the number of ob-
servations. As we obtain more examples, naturally aver-
ages get less noisy, and more predictive (e.g., agesavg and
friendsavg ).

• The original post gets less important with increasing k. Af-
ter observing 100 reshares, it becomes less important that
the original post was made by a page (orig_is_page), or
that the original poster had many connections to other users
(outdeg(v0)).

• Similarly, the actual content being reshared gets less impor-
tant with increasing k. Almost all content features tend to
zero as k increases, except for has_caption and is_en . This
can be explained by the fact that cascades of photos with
captions have a unimodal distribution, and cascades started
by English speakers have a bimodal distribution. Thus, these
features become correlated in opposite directions.

• Successful cascades get many views in a short amount of
time, and achieve high conversion rates. The number of
users who have viewed reshares of a cascade is more nega-
tively correlated with increasing k (views1..k−1,k), suggest-
ing that requiring “fewer tries” to achieve a given number of
reshares is a positive indicator of its future success. On the
other hand, while requiring fewer views is good, rapid expo-
sure, or reaching many users within a short amount of time
is also a positive predictor (views ′1..k−1,k).

• Structural connectedness is important, but gets less impor-
tant over time. Nevertheless, reshare depth remains highly

(a) Content

●
●

●

●

● ●●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●
●●

●

●

●● ●

● ● ●

●

●

●●

●

●●

●

●

●

●●
●

●
●●● ●

●

●●

●●
●

●

●
●

●
●

● ●●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

has_caption is_en scorecloseup

scorefood scoreindoor scorelandmark

scorenature scoreoutdoor scoreoverlaidtext

scoreperson scoresynthetic scorewater

−0.05

0.00

0.05

0.10

−0.04
−0.02

0.00
0.02
0.04

−0.06
−0.04
−0.02

0.00

−0.03

−0.02

−0.01

0.00

−0.075
−0.050
−0.025

0.000

−0.04

−0.02

0.00

0.00
0.01
0.02
0.03
0.04
0.05

−0.06
−0.04
−0.02

0.00

0.00
0.03
0.06
0.09
0.12

−0.06
−0.04
−0.02

0.00

0.000
0.025
0.050
0.075
0.100

−0.04
−0.03
−0.02
−0.01

0.00

25 50 75 100 25 50 75 100 25 50 75 100
k

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t
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(c) Resharer
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(e) Temporal
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Figure 7: The importance of each feature varies as we observe more
of a cascade, as shown by the change in correlation coefficients.

correlated: the deeper a cascade goes, the more likely it is to
be long-lasting, as even users “far away” from the original
poster still find the content interesting.

• The importance of timing features remains relatively stable.
While highly correlated, timing features remain remarkably
stable in importance as k increases.

We note individual features’ logistic regression coefficients em-
pirically follow similar shapes, but have the downside of having
interactions with one another. Using either the slope of the best-
fit line of the cascade size against the normalized feature value,
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Figure 8: The mean structural virality (Wiener index) increases
with cascade size, but is significantly higher for user cascades.

or individual feature performance also reveals similar trends. Fur-
ther LIWC text content features (positive, negative, and social cat-
egories) consistently performed poorly, attaining performance no
better than chance, with accuracy between 0.49 and 0.52.

4. PREDICTING CASCADE STRUCTURE
Similar to predicting cascade size we can also attempt to predict

the structure of the cascade. We now turn to examining how struc-
tural features of the cascade determine its evolution and spread.

4.1 User-started and page-started cascades
Earlier we discussed the notion of structural virality as a mea-

sure of how much the structure of a cascade is dominated by a
few hub nodes, and we saw that user-initiated cascades have sig-
nificantly higher structural virality than page-initiated cascades, re-
flecting their richer graph structure. It is natural to ask how these
distinctions vary with the size of the cascade — are large user-
initiated cascades more similar to page-initiated ones, e.g. are they
driven by popular hub nodes?

Figure 8 shows that the opposite is the case — user and page-
initiated cascades remain structurally distinct, with this distinction
even increasing with cascade size. Moreover, this difference con-
tinues to hold even when controlling for the number of first-degree
reshares (directly from the root), suggesting a certain robustness to
their richer structure. Because of these structural differences, we
handle user and page cascades separately in the analyses that fol-
low.

These distinctions may also help explain a large difference in
the predictability of user-initiated vs. page-initiated cascades. We
observe that for page cascades accuracy exceeds 80%, while that
for user cascades is slightly under 70%. (These results also hold
for the F1 score and AUC, with a difference of about 0.1.) The
fact that much more of the structure of a page-initiated cascade is
typically carried by a small number of hub nodes may suggest why
the prediction task is more tractable in this case.

4.2 The initial structure of a cascade influences
its eventual size

To understand how structure bears on the future growth of the
cascade, we examine how the configuration of the first three re-
shares (and the root) correlates with the cascade size. In particu-
lar, we measure the proportion of cascades starting from each con-
figuration that reach the median size. We do this separately for
two different initial poster types: a user, and a page. We discard
“celebrity” users who may large followings like the most popular
pages. Figure 9a shows that as the initial cascade structure becomes
shallower, the proportion of cascades that double in size increases.
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Figure 9: Shallow initial cascade structures are indicative of larger
cascades. In contrast to page-started cascades, where the mean time
to the 3rd reshare decreases with decreasing depth of the initial
cascade, shallow cascades take a much longer time to form for user-
started cascades. For these, the connections of the 1st resharer also
significantly impacts the time to the 3rd resharer, especially when
it receives two reshares before the original receives a second.

To examine why this would be the case, we also examined the time
needed for the 3rd reshare to happen (Figure 9c). For pages, shal-
lower cascades tend to happen more rapidly, consistent with being
initiated by a popular page and achieving a large number of re-
shares directly from its fans. Interestingly, the configuration hav-
ing the second and third reshares stemming from the first reshare
correspond to having a first resharer with many connections, and
indicating that the initial poster is less popular, be it a page or user
(Figure 9d).

Curiously, for user-started cascades, the star configuration tends
to grow into the largest cascades, but is also the slowest. It also
tends to correspond to the first resharer having a low degree, both
for page and user roots. One might speculate that this pattern is
indicative of the item’s appeal to less well-connected users, who
also happen to be more likely to reshare. In fact, a median resharer
has 35 fewer friends than someone who is active on the site nearly
every day. Thus, an item’s appeal, rather than the initial network
structure, may drive the eventual cascade size in the long run.

4.3 Predicting cascade structure
The observations above naturally lead to the question of whether

it is possible to predict future cascade structure. In particular, we
aim to distinguish cascades that spread like a virus in a shallow
forest fire-like pattern (Figure 3a) and cascades which spread in
long, narrow string-like pattern (Figure 3c). As discussed earlier,
this difference is related to the structural virality of a cascade and is
quantified by the Wiener index. Here, we observe k = 5 reshares
of a cascade and aim to predict whether the final cascade will have
a Wiener index above or below the median. We obtain accuracy of
0.725 (F1 = 0.715, AUC = 0.796), while random guessing would,
by construction, achieve accuracy of 0.5.
Temporal and structural features are most predictive of struc-
ture. For this task we expect structural features to be most im-
portant, while we expect temporal features not to be indicative
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Figure 10: In predicting the largest cascade in clusters of 10 or
more cascades of identical photos, we perform significantly above
the baseline of 0.1.

of the cascade structure. However, when we train the model on
individual classes of features we surprisingly find that both tem-
poral and structural features are almost equally useful in predict-
ing cascade structure: 0.622 vs. 0.620. Nevertheless, structural
features remain individually more accurate (≈ 0.58) and highly
correlated (0.161 ≤ |r| ≤ 0.255) with the Wiener index. In-
dividually, one temporal feature, views ′1..k−1,k, is slightly more
accurate (0.602) compared to the best-performing structural fea-
ture, outdeg(v̂0) (0.600), but is significantly less correlated (0.041
vs. −0.255). The two classes of features nicely complement each
other, since when combined, accuracy increases to 0.72.
Cascade structure also becomes more predictable with increas-
ing k. Like for cascade growth prediction, our prediction perfor-
mance improves as we observe more of the cascade, with accuracy
linearly increasing from 0.724 when k is 5 to 0.808 when k is 100.
A linear relation also exists in the alternate task where we set the
minimum cascade size R to be 100, varying k between 5 and 100.
Changes in feature importance. As we increase k, we find that
the structural features become highly correlated with the Wiener
index, suggesting that the initial shape of a cascade is a good indi-
cator of its final structure. Rapidly growing cascades also result in
final structures that are shallower—temporal features become more
strongly correlated with the Wiener index as k increases. Unlike
with cascade size, views were generally weakly correlated with
structure, while content features had a weak, near-constant effect.
Nonetheless, some of these features still provided reasonable per-
formance in the prediction task.
User vs. page-started cascades. In predicting the shape of a cas-
cade, we find that our overall prediction accuracy for pages is slightly
higher (0.724) than for users (0.700). While using only structural
features alone results in a higher prediction accuracy for users (0.643)
than for pages (0.601), user and content features are significantly
more predictive of cascade structure in the case of pages.

To sum up, we find that predicting the shape of a cascade is not
as hard as one might fear. Nevertheless, predicting cascade size is
still much easier than predicting cascade shape, though classifiers
for either achieve non-trivial performance.

5. PREDICTABILITY & CONTENT

5.1 Controlling for cascade content
In our analyses thus far, we examined cascades of uploads of

different photos, and tried to account for content differences by in-
cluding photo and caption features. However, temporal and struc-
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Figure 11: The initial exposure of the uploaded photo and initial
reshares serve to differentiate datasets from one another, as can be
seen by comparing the correlation coefficients of each feature with
the log cascade size. Solid circles indicate significance at p < 10–3,
and lines through each circle indicate the 95% confidence interval.

tural features may still capture some of the difference in content.
Thus, we now study how well we can predict cascade size if we
control for the content of the photo itself. We consider identical
photos uploaded to Facebook by different users and pages, which
is not a rare occurrence. We used an image matching algorithm
to identify copies of the same image and place their corresponding
cascades into clusters (983 clusters,Nc = 38,073,Nr = 12,755,621).
As one might expect, even the same photo uploaded at different
times by different users can fare dramatically differently; a cluster
typically consists of a few or even a single cascade with a large
number of reshares, and many smaller cascades with few reshares.
The average Gini coefficient, a measure of inequality, is 0.787 (σ =
0.104) within clusters. Thus, a natural task is to try to predict the
largest cascade within a cluster. For every cluster we select 10 ran-
dom cascades, placing the accuracy of random guessing at 10%.

As shown in Figure 10, in all cases we significantly outperform
the baseline. Using a random forest model, we can identify the
most popular cascade nearly half the time (accuracy 0.497); a mean
reciprocal rank of 0.662 indicates that this cascade also appears in
the top two predicted cascades almost all the time.

In terms of feature importance we notice that best results are
obtained using temporal features, followed by resharer, root node,
and structural features. Essentially, if one upload of the photo is ini-
tially spreading more rapidly than other uploads of the same photo,
that cascade is also likely to grow to be the largest. This points
to the importance of landing in the right part of the network at the
right time, as the same photo tends to have widely and predictably
varying outcomes when uploaded multiple times.

5.2 Feature importance in context
Some features may be more or less important for our prediction

tasks in different contexts. Figure 11 shows how several features
correlate with log-transformed cascade size when conditioned on
one of four different variables, including (1) source node type—
user vs page, (2) language—English versus Portuguese, the two
most common languages of cascade root nodes in our dataset, (3) whether
text is overlaid on a photo—a common feature of recent Internet
memes, and (4) content category. We determine content category
by matching entities in photo captions to Wikipedia articles, and



in turn articles to seven higher-level categories: animal, entertain-
ment, politics, religion, famous people (excluding religious and po-
litical figures), food, and health.

Figure 11 shows that the initial rate of exposure of the uploaded
photo is generally more important for page cascades than for user
cascades (views ′0,5). This is likely due to the higher variance in
the distribution of the number of followers for a user versus a page.
For page cascades in our sample, the median number of followers
is 73,855 with a standard deviation of 675,203, while for users at
the root of cascades the median number of friends and subscribers
is 1,042 with a standard deviation of 26,482. Though rate of expo-
sure to the original photo is more important for pages, we see that
rate of exposure to the initial reshares (views ′1..4,5) is much more
important for user cascades.

The number and rate of views also act to differentiate topical cat-
egories, with religion having the highest correlation between views
and cascade size. Correlation for the rate of views of the uploaded
photo is also higher for those with a Portuguese-speaking root node
as opposed to an English one. The feature outdeg(v0) indicates the
ability of the root to broadcast content, and we see this playing an
important role for page cascades, Portuguese content, photos with
text, and religious photos. This indicates that much of the success
of these cascades is related to the root nodes being directly con-
nected to large audiences.

In addition to the analysis of Figure 11, we also examined how
the features correlate with the structural virality of the final cas-
cades. (Each of the reported correlation coefficient comparisons
that follow are significant at p < 10–3 using a Fisher transforma-
tion.) Photos relating to food differ significantly from all other cat-
egories in that features of the root, such as outdeg(v0), are less
negatively correlated (>–0.18 vs. –0.11), and depth features, such
as depthavg

k , are less positively correlated (>0.18 vs. 0.11). This
relationship also holds for English compared to Portuguese pho-
tos. While users with many friends or followers are more likely
to generate cascades of larger size and greater structural virality,
pages with many fans create cascades of larger size, although not
necessarily greater virality (0.05 vs. –0.01). However, if the ini-
tial structure of a cascade is already deep, the final structure of the
cascade is likely to have greater structural virality for both user and
page-started cascades (>0.16). A user-started cascade whose ini-
tial reshares are viewed more quickly is also more likely to become
viral than that for a page-started cascade (0.23 vs. 0.06).

6. DISCUSSION & CONCLUSION
This paper examines the problem of predicting the growth of

cascades over social networks. Although predictive tasks of sim-
ilar spirit have been considered in the past, we contribute a novel
formulation of the problem which does not suffer from skew bi-
ases. Our formulation allows us to study predictability throughout
the life of a cascade. We examine not only how the predictability
changes as more and more of the cascade is observed (it improves),
but also how predictable large cascades are if we only observe them
initially (larger cascades are more difficult to predict). While some
features, e.g., the average connection count of the first k resharers,
have increasing predictive ability with increasing k, others weaken
in importance, e.g., the connectivity of the root node. We find that
the importance of features depends on properties of the original up-
load as well: the topics present in the caption, the language of the
root node, as well as the content of the photo.

Despite the rich set of results we were able to obtain, there are
some limitations to this study. Most importantly, the study was con-
ducted entirely with Facebook data and only with photos. Still, one
advantage of this is the scale of the medium; hundreds of millions

Figure 12: There is considerable overlap in friendship edges (blue)
between four independent cascades of the same photo.

of photos are uploaded to Facebook every day, and photos, more
than other content types, tend to dominate reshares. This also gives
us high-fidelity traces of how the photo moves within Facebook’s
ecosystem, which allows us to precisely overlay the spreading cas-
cade over the social network. Moreover, we are able to identify
uploads of the same photo and track them individually. This elim-
inates the concern of shares being driven by an external entity and
only appearing to be spreading over the network. Instead, exter-
nal drivers benefit our study by creating independent ‘experiments’
where the same photo gets multiple chances to spread, helping us
control for the role of content in some of our experiments. An-
other disadvantage of our setup is that diffusion within Facebook is
driven by the mechanics of the site. The distinction between pages
and users is specific to Facebook, as are the mechansisms by which
users interact with content, e.g., liking and resharing. Despite these
limitations, we believe the results give general insights which will
be useful in other settings.

The present work only examines each cascade independently
from others. Future work should examine interactions between
cascades, both between different content competing for the same
attention, and between the same content surfacing at different times
and in different parts of the network. We found that when the same
photo is uploaded at least 10 times, the largest cascade was twice
as likely to be among the first 20% of uploads than the last 20%.
Similarly, for photos uploaded 20 times, the largest cascade was
2.3 times as likely to be among the first 20% than the last. Fig-
ure 12 shows the friendship edges between users participating in
different cascades of a single, specific photo. The high connectivity
between different cascades demonstrates that users are likely being
exposed to the same photo via different cascades, which could be a
contributing factor in why earlier uploads of the same photo tend to
generate larger cascade than later ones. Between-cascade dynamics
like this should provide ample opportunities for further research.

Addressing questions like these will lead to a richer understand-
ing of how information spreads online and pave the way towards
better management of socially shared content and applications that
can identify trending content in its early stages.
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