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Abstract

Two decades of field experiments on get-out-the-vote tactics suggest that impersonal tactics, like
mass emails, have only a modest or negligible effect on voter turnout, while more personal tactics, like
door-to-door canvassing, are more effective. However, the COVID-19 pandemic threatens to upend the
vast face-to-face voter mobilization efforts that have figured prominently in recent presidential election
campaigns. If campaigns can no longer send canvassers to voters’ doors, what tactics can they turn
to in order to mobilize their supporters? This paper evaluates a promising alternative to face-to-face
get-out-the-vote tactics: mobile app technology that enables millions of people to message their friends
to urge them to vote. Prior to the most recent US midterm elections in 2018, the mobile app OUTVOTE

randomized an aspect of their system, hoping to unobtrusively assess the causal effect of their users’
messages on voter turnout. We develop a statistical methodology to address the challenges of such
data, and then analyze the OUTVOTE study. Our analysis reveals evidence of very large and statistically
significant treatment effects from friend-to-friend mobilization efforts (×CACE= 8.3, CI = (1.2, 15.3)).
Further, the statistical methodology can be used to study other friend-to-friend messaging efforts. These
results suggest that friend-to-friend texting, which is a personal voter mobilization effort that does not
require face-to-face contact, is an effective alternative to conventional voter mobilization tactics.

Introduction

Political campaigns in the United States spend enormous resources on “get out the vote” (GOTV) interven-
tions to nudge potential voters to the polls. Such efforts are especially large in the weeks leading up to a
presidential election, when millions of campaign workers and volunteers descend on battleground states
to encourage supporters to vote. Randomized control trials (RCTs) show that face-to-face encouragements
such as these substantially increase voter turnout [Green and Gerber, 2019]. However, the COVID-19
epidemic makes door-to-door canvassing infeasible because face-to-face contact, especially between
strangers, is both limited and unsafe. If campaigns cannot use one of their most reliable tactics for
mobilizing supporters, what scalable alternatives can they turn to? One easy alternative is to use mass
texting or email. But meta-analysis shows that many scalable GOTV tactics such as these have only modest
effects on voter turnout, typically less than one percentage point [Green and Gerber, 2019]. Scalable,
but impersonal, communication is not a substitute for door-to-door canvassing.

The evolution of mobile communication, however, has created new opportunities for effective GOTV
strategies that do not require face-to-face contact. In particular, political campaigns have begun to embrace
friend-to-friend organizing, in which volunteers are encouraged to send messages to their close contacts
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to encourage them to vote. The premise of friend-to-friend organizing is that GOTV appeals are especially
effective, even over mass texts or emails, because friends are often welcome and trusted messengers.

But there have been few evaluations of friend-to-friend outreach, and none conducted on a large
scale [Teresi and Michelson, 2015, Haenschen, 2016, Green, 2019]. The reason is that friend-to-friend orga-
nizing is a fundamentally challenging object of experimental study. At first glance, designing a suitable ran-
domized evaluation may seem simple: a campaign directs volunteers to send a scripted GOTV message to a
randomly assigned subset of their phone contacts and not to any others. This approach does produce a ran-
dom treatment–control split of each volunteer’s contacts, but it risks studying something other than the ef-
fects of organic communication between friends. The issue is that it directs volunteers to send a message to
contacts they may not have otherwise chosen, like bosses or ex-boyfriends. Such GOTV messages may feel
like impersonal spam, not personal appeals, and so the study may mistakenly attribute the typically small
effect that spam has on turnout [Green and Gerber, 2019] to authentic friend-to-friend appeals.

This paper uses a large-scale field study from the 2018 US midterm elections to measure the causal effect of
friend-to-friend messages on voter turnout. (This study was performed before the COVID-19 pandemic but,
for the reasons described above, its results are particularly pertinent now.) The study was conducted by
OUTVOTE out [2020], a mobile phone app designed to systematize the process of encouraging one’s friends
to vote. When opened, the app first prompts its user to create a queue of all the phone contacts they intend
to message. Then, for each queued contact, the app takes the user to a message interface where the user
can either select a default message—e.g., “Don’t forget to vote this Tuesday!”—or craft an individualized
message, and then send it. Figure 1 shows screenshots of an OUTVOTE user’s typical workflow.

During the months prior to the 2018 midterm elections, OUTVOTE deployed an unobtrusive randomization
scheme between the queuing of friends and sending of messages. For any queues of at least five people,
the app would randomly skip some people in the queue, each with probability 0.05, not taking the user
to the messaging stage for them. This skipping procedure was designed to minimally degrade the user’s
experience while still injecting enough randomness into natural friend-to-friend interaction to facilitate
evaluation of friend-to-friend contact. In this paper, we study the data produced by OUTVOTE to assess
the causal effect of receiving a GOTV message. We find evidence of large and significant treatment effects
from friend-to-friend mobilization efforts.

OUTVOTE’s study was designed to have a “light touch,” but the constraints of conducting an experiment
that is invisible to users complicates the estimation of causal effects in several respects. First, if a user
noticed someone had been skipped, the user could add that person to a new queue in which they might not
be skipped, thereby overriding the random assignment process and inviting confounding. We therefore
define a treatment–control split of subjects in a manner that is unconfounded even when subjects may be
added to many queues but only randomly skipped in some.1 Second, a large share of subjects do not
comply with their treatment assignment, as we define it: some subjects assigned to receive messages
do not, while others assigned not to receive messages do. Non-compliance limits the scope of estimable
causal effects and increases the statistical uncertainty of the estimators. We address non-compliance by
working within a standard instrumental variable (IV) framework [Angrist et al., 1996] and defining the
causal quantity of interest to be the average effect of the treatment on a subset of the overall subject
pool, namely, those who would comply with their assigned treatment. We further refine this subset using
subjects’ positions in the queue in ways that improve the precision of the IV estimator. Third, due to
OUTVOTE’s limited information about subjects, errors occur when matching them to a database of public
information about citizens’ voter history. Unreliable information about voting biases estimates of the
causal effect towards zero. We address such measurement error using ancillary information, refining
the study population to subjects whose voter turnout is measured reliably. We show that when these
estimation issues are addressed, the estimated effects of friend-to-friend encouragements to vote are
large and statistically robust.

1It is possible and perhaps tempting to define treatment–control splits that are confounded. For instance, defining the control
group to be subjects who were skipped in every queue they were added to leads to a confounded split, because there may be
some subjects whom users will re-queue any number of times to message for reasons systematically related to the outcome. In the
appendix, we provide empirical evidence that this definition is confounded as it fails to maintain symmetry between the treatment
and control groups.
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(a) Queuing stage. Users select contacts to mes-
sage. Contacts are ranked by tiers within
which they are sorted alphabetically. The
top tier are contacts registered in a district
with an upcoming election.

Harry Bridges

Hey Harry! Please don’t forget 
to vote on Nov 6th! It’s going to 
be really close, and we have to 
make our voices heard. If you’re 
not sure where your polling 
place is, check out Vote.org!

(b) Messaging stage. Users are taken to a mes-
saging interface for each contact on their
queue. Users can use the default message
or craft their own.

Figure 1: The two stages of an OUTVOTE user’s workflow. The app injected randomness
between the queuing stage (a) and the messaging stage (b) by skipping contacts in the queue.

The subject pool, treatment assignment, and non-compliance. The subject pool consists of people
who OUTVOTE users queued to message, provided that the queue contained at least five subjects. The
treatment of interest is whether a subject received a GOTV text, and the outcome of interest is whether or
not they voted in the 2018 US midterm election.

To estimate the causal effect, we must address several statistical challenges. Some arise when users
repeatedly create queues with the same contacts, or when the same subject appears on more than one
user’s queue. To sidestep these, we consider only the first time a subject is queued by any user, thereby
defining the assigned control group to be those subjects randomly skipped in their first queue, and defining
the assigned treatment group to be those not skipped in their first queue. Considering only the first queue
ensures a random treatment assignment—in particular, it prevents possible confounding from subjects
being queued multiple times for reasons related to their likelihood of voting. For each subject, the first
queue is considered the moment of entry into the study population, and whether they are skipped in it
determines their treatment assignment.
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This definition of the assigned treatment and control groups immediately raises the prospect of “non-
compliance.” Generally speaking, non-compliance occurs when subjects in the assigned treatment group
do not receive treatment, or when subjects in the assigned control group do. In this study, subjects’
non-compliance is driven by the users, who typically created long queues (the median length is 22) and
often stopped before messaging everyone. Only 29% of all subjects in the assigned treatment group
received a message. Users sometimes also re-queued and messaged subjects who had been skipped in
their first queue; 13% of subjects in the assigned control group received a message.

Formally, let Zi denote the assignment to receive (Zi=1) or not receive (Zi=0) the treatment. Let Di
denote the treatment receipt, whether subject i received a text (Di=1) or did not (Di=0). Let Yi denote the
recorded outcome, whether subject i voted (Yi=1) or did not (Yi=0). The data are {Zi , Di , Yi}ni=1.

Defining and estimating the complier average causal effect. We want to estimate the causal effect
of receiving a GOTV text on voting. Let Yi1 be subject i’s potential outcome of voting if they receive
a GOTV text (Di =1) and Yi0 be their potential outcome if they do not (Di =0). The causal effect of
subject i receiving a text is the difference Yi1−Yi0. In an ideal randomized experiment, the average
causal effect (ACE) across all subjects—i.e., E [Yi1−Yi0]—would be identified; however, the presence of
non-compliance limits the scope of identified average effects.

Experiments with non-compliance are routinely analyzed by treating the random assignment Zi as an
instrumental variable for the treatment receipt Di [Angrist et al., 1996]. In the face of non-compliance,
the recorded receipt Di may be confounded—users may be systematic in choosing which subjects they
message. Following Angrist et al. [1996], let Di1 be subject i’s potential receipt if they are assigned to
receive treatment and Di0 be their potential receipt if they are assigned not to.

There are four types of subjects, defined by the four combinations of the potential receipts. Some subjects
are “compliers” who receive a message if and only if assigned to the treatment group; the set of all
compliers is C = {i : Di1 = 1 and Di0 = 0}. The three remaining types of subject are “always-takers”
(Di0=Di1=1), “never-takers” (Di0=Di1=0), and “defiers” (Di0=1 and Di1=0).

In the OUTVOTE study, a complier is someone the user would message only if they were not skipped in the
first queue. By contrast, an always-taker is someone the user would always message, even if that person
were skipped. An always-taker could be someone prominently positioned near the top of the ranking
of phone contacts from which users select whom to queue (see Fig. 1a). The user notices if they are
skipped and then re-queues and messages them. If not skipped, they are among those high in the queue
whom the user messages before quitting. A never-taker instead may be someone near the bottom of the
queue, whom the user would not message, even if they were not slated to be skipped. Finally, a defier is
someone who would be messaged only if they are skipped in the first queue—it is hard to imagine that
such subjects exist in large number.

While a study with non-compliance cannot generally identify the average causal effect among all subjects,
it may identify the average causal effect among compliers (CACE),

CACE= E [Yi1 − Yi0 | i ∈ C ] . (1)

Identifying the CACE requires several assumptions [Angrist et al., 1996]. One assumption is “monotonicity,”
i.e., that there are no defiers. In the OUTVOTE study, we assume there are no subjects who would only
receive a message if skipped in a user’s queue.

Another assumption is that the assignment Zi satisfies the three “instrumental conditions” [Hernan and
Robins, 2010]. The first is “relevance,” which stipulates a non-zero association between assignment Zi
and treatment receipt Di . This condition is met in the OUTVOTE data; recall that 29% of the assigned
treatment group received messages, as compared to 13% of the assigned control group. The second
condition is the “exclusion restriction,” which stipulates that Zi must only affect the outcome Yi through
the mediating effect of the treatment Di . Intuition suggests that this condition holds: whether a subject
is skipped in a user’s queue (Zi) should not affect their voting behavior (Yi) except by influencing the
user to send them a reminder to vote (Di). The third condition stipulates that the assignment Zi and
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outcome Yi do not share causes. This condition holds because the assignment Zi is randomized. Note that
the second and third instrumental conditions guarantee a stronger condition known as “independence”
[Angrist and Pischke, 2008], “exchangeability” [Hernan and Robins, 2010], or “ignorability.” It states
that the potential outcomes are independent of assignment, i.e., Yi1, Yi0 ⊥⊥ Zi , and informally means the
assigned treatment and control groups have the same expected potential outcomes.

Note that an instrument that meets all of the above conditions but is only weakly related to receipt can
introduce finite-sample bias. The rule-of-thumb of Staiger et al. [1997] diagnoses an instrument as “weak”
if a regression of Di on Zi produces an F -statistic less than 10. No such bias is present in the OUTVOTE

data—this regression on the whole subject pool yields an F -statistic of 348 and comparable values for all
subsets we analyze.

The final assumption is that messages sent to subject i have no effect on any other subject j. This is a
formulation of the “stable unit treatment value assumption” (SUTVA) [Rubin, 1980] that is commonly
made in the experimental literature. This assumption is violated by “spillover effects,” which are typically
of concern when subjects form a densely-connected social network. Here, however, 97% of subjects were
queued by a single user, suggesting that OUTVOTE’s user base and, by extension, the overall subject pool
are not densely connected. Previous work assessing spillover effects of get-out-the-vote appeals within
and across households suggests that such bias tends to be negligible [Sinclair et al., 2012].

Under these assumptions, the CACE is consistently estimated by the IV estimator,

×CACE=
E[Yi | Zi=1]−E[Yi | Zi=0]
E[Di | Zi=1]−E[Di | Zi=0]

. (2)

The numerator estimates the effect of assignment, or the intent-to-treat (ITT) effect. Under the monotonic-
ity assumption (no defiers), the denominator estimates the proportion of compliers in the subject pool.
The IV estimator can be augmented with covariates in order to improve the precision with which treatment
effects are estimated. Below we present both the unadjusted estimate and the estimate adjusting for 85
pre-assignment covariates (e.g., age, party registration, prior voting history).

Using ancillary information to reduce measurement error when measuring voter turnout. As in
most GOTV field studies, the recorded outcome of whether subject i voted (Yi) is measured by matching
subjects to a voter roll database. OUTVOTE matched subjects to a database using the information in the
phone contacts that users shared with the app. However, in keeping with their light-touch approach, they
did not ask users to enter any missing details. If a user’s phone listed a contact as “Alice,” with no last
name, then OUTVOTE’s matching algorithm only used Alice’s first name and mobile number. Thus, some
proportion of subjects in OUTVOTE’s study are incorrectly matched and their recorded outcome may be
misclassified.

Measurement error in outcomes often introduces attenuation bias when the error is “non-differential” [Kris-
tensen, 1992, Lewbel, 2007, Imai and Yamamoto, 2010]. Denote a subject’s true outcome as Y ?i . Mea-
surement error on outcomes is non-differential with respect to assignment if the recorded outcome is
independent of the assignment given the true outcome,

Yi ⊥⊥ Zi |Y ?i . (3)

We can safely assume the measurement error introduced by matching errors is non-differential since Zi
was randomized and because matching occurred prior to assignment.

We surmise, then, that in the present study measurement error attenuates the estimated effect. The
numerator of the IV estimator in Eq. (2), which estimates the ITT, can be written

E[Yi | Zi=1]−E[Yi | Zi=0] = πBIAS ×
�
E[Y ?i | Zi=1]−E[Y ?i | Zi=0]︸ ︷︷ ︸

true ITT

�
, (4)

where the bias is the difference of two probabilities,

πBIAS = P(Yi=1 |Y ?i =1)− P(Yi=1 |Y ?i =0). (5)
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We include a proof in the appendix. If the conditional probability of correct measurement is greater than
the probability of mismeasurement, i.e., P(Yi=1 |Y ?i =1)> P(Yi=1 |Y ?i =0), then the bias attenuates the
true effect, πBIAS ∈ (0, 1]. Informally, this assumption implies that the measurement is not so poor that a
non-voter has a greater chance than a voter of being classified as having cast a ballot.

In the OUTVOTE study, the attenuation bias of the estimate may be severe given the inherent difficulty of
accurately matching contacts based on incomplete information. To mitigate this issue, we obtained data
from the data vendor PREDICTWISE that links millions of mobile phone numbers to voter roll entries. PRE-
DICTWISE relies on commercially-available marketing data to associate complete name and demographic
information with mobile phone numbers; such information is helpful in matching phone numbers to the
voter rolls. OUTVOTE did not rely on such information when it performed matching—thus, their two
approaches often yield different results. We found that 30% of subjects were matched to the same entry by
both OUTVOTE and PREDICTWISE. We assume (and provide evidence in the appendix) that this subset of
subjects exhibits substantially less measurement error and refine the study population to these 30%.

Using queue position to improve compliance and reduce error. Low compliance rates reduce the
precision of the CACE estimator. The denominator of Eq. (2) implies that only 16% of subjects are
compliers. We can improve the precision of the estimator by filtering the subjects by a pre-assignment
variable that improves compliance while still maintaining a large enough n.

Non-compliance in the assigned treatment group is driven by users abandoning long queues before
messaging everyone on them. Whether subjects “complied” with their treatment assignment thus depends
on their position in the queue. OUTVOTE did not save subjects’ queue position in its database. However, a
simple method based on timestamp information of when users queued subjects, detailed in the appendix,
confidently reconstructs the queue position for 60% of subjects. As described in the appendix, when
this method fails to reconstruct queue position, it is often because users pressed an “Add all” button
that queued all of their phone contacts simultaneously. Those added to the subject pool by the “Add
all” function exhibit very low compliance: subjects whose position cannot be reconstructed have an 8%
compliance rate as compared to 22% among those whose position can be. Refining the study population
to those whose queue position can be reconstructed, as we do, both improves compliance rates and
facilitates further refinements based on queue position.

Let Q i ∈ {1,2,3, . . . } be the position of subject i in their first queue. Note that Q i is a pre-assignment
variable since assignment is determined by subject i’s first queue only. Moreover, Q i is unchanged by
subjects’ random assignments: if the first two people in a queue are randomly skipped, the third person
will still have Q i=3. Thus, any subset of subjects defined by levels of Q i maintains the symmetry between
the assigned treatment and control groups. (In the appendix, we confirm empirically that Q i is unrelated
to assignment Zi .)

Subjects with lower values of Q i were more likely to receive messages. For example, the contact rate
among subjects who were added first (Q i=1) is 47%, and the rate among those added within the top ten
(Q i ≤ 10) is 34%. Refining the study population based on a maximum allowable queue position qmax
yields a higher share of compliers, for whom causal effects are more precisely estimable. Refining the
study population in this way changes the estimand to

CACEqmax
= E[Yi1 − Y01 | i ∈ C and Q i ≤ qmax], (6)

which trades off generalizibility for precision.

We select qmax to maximize the expected precision of the estimator. The precision is affected both by the
compliance rate and by n. For example, although the compliance rate is highest among the subpopulation
defined by qmax=1, there are only n=2, 996 such subjects. Based on a power analysis (in the appendix),
we find that qmax=103 minimizes a proxy for the expected sampling variability of the CACE estimator; it
yields a study population of n=27, 464 with a 25% compliance rate. Figure 2 shows compliance, n, and
power as a function of qmax. This procedure is directly analogous to that of Crump et al. [2006], which
also trims the sample systematically to minimize the asymptotic variance of the estimator.
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Figure 2: The trade-off between n and compliance, as the maximum allowable position of
subjects in their first queue increases. The study’s power is influenced by both. It degrades
after qmax=103 (red line), when increasing n fails to compensate for lower compliance rates.

Study Details

Setting An OUTVOTE user first syncs his or her phone’s contacts with the app, which then matches
them to the voter rolls. The user is then presented with a ranked list of contacts, each annotated with
information about the contact’s participation in past elections, party registration, and residence in a
battleground state (see Fig. 1a). The user then creates a queue of friends they intend to message. Once
a queue is set, the app takes the user to a messaging interface for each contact in the queue, in the
order in which the user queued each contact. In the messaging interface, users can either send a default
message or create their own. After the user presses “Send” (see Fig. 1b), they are taken immediately to
the messaging interface for the next contact.

Randomization and study period During the study period from August 3, 2018 until the day of the
US midterm elections on November 6, 2018, the app randomly skipped queued contacts when taking
users to the messaging stage. Contacts were only skipped in queues of length five or greater, and each
was slated to be skipped independently with probability 0.05. During this period, approximately 5,000
unique OUTVOTE users added 500,000 unique phone contacts to queues of length five or greater and
ultimately sent approximately 132,000 GOTV messages.

Treatment We define the treatment (Di=1) to be receiving at least one GOTV text message from an
OUTVOTE user during the study period. Users were able send a default message or craft their own. We
estimate from simple text analysis that 98% of all sent messages were the default or minor variants
(e.g., with an emoticon inserted, or the recipient’s name edited). Users could participate in one or more
campaigns, each of which provided their own defaults. Approximately 88% of all messages sent were
associated with non-partisan campaigns like OUTVOTE’s “Text Every Voter” campaign or a campaign hosted
by Vote.org. The remaining 12% of messages were associated with partisan campaigns, either those on
behalf of a candidate (e.g., Alexandria Ocasio-Cortez for Congress) or broadly partisan campaigns (e.g.,
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Swing Left). In the appendix, we provide the text and campaign of the ten most-used default messages,
which account for 55% of all messages; in Table 1, we show the top three.

Eligible subject pool During the study period, anyone whom an OUTVOTE user added to a queue of
length five or greater was subject to randomization. Subjects must have also been matched to the TARGETS-
MART voter rolls database for their outcomes to be observed. We further focus only on subjects who were
registered to vote prior to the study period. There are 195,118 subjects who meet these criteria.

Assigned treatment and control groups A subject is classified as assigned to the control group if they
were skipped in the first queue of length five or greater to which they were added (Zi=0); otherwise,
they were classified as part of the treatment group (Zi=1). We determine each subject’s first queue by
examining the timestamps of users’ queuing actions.

Refined study population To mitigate the bias introduced by mismatching subjects to voter rolls, we
obtained ancillary match data from PREDICTWISE. Both OUTVOTE and PREDICTWISE matched 56,154
subjects to the same entry in the voter rolls.

To reduce the precision losses due to low compliance with assignment, we reconstructed subjects’ queue
positions from timestamp information indicating when users added subjects to queues. The position in
the first queue can be confidently inferred for 60% of eligible subjects. A power analysis indicates that
the subset of subjects who were within the top 103 positions in their first queue minimizes a proxy for
the expected error in the CACE estimator (see Fig. 2), but the results are largely unchanged when the
threshold is raised or lowered.

There are n=27,464 subjects in the refined study population who were (1) matched by OUTVOTE and
PREDICTWISE to the same entry in the voter rolls, and (2) in the top 103 positions in their first queue.
Of these, 1,454 subjects (5.3%) are part of the assigned control group and the remaining 25,796 part
of the assigned treatment group. Table 2 summarizes the assignments, treatments received, and vote
outcomes for the refined study population.

Covariates Pre-assignment covariate information on subjects is available from TARGETSMART’s voter
database, to which subjects were matched. We use 85 pre-assignment covariates to adjust CACE estimates.
A full description of these covariates is provided in the appendix. The list includes age, number of previous
general and primary election votes, household income, and an assortment of other variables based on
multilevel modeling of survey data [Konitzer et al., 2017].

Table 1: Examples of default messages.

Message template Campaign # of messages

Hey {FIRST_NAME}, I’m reminding all my friends to vote on Tue, Nov 6th! You
can find your polling place at polls.vote.org. I’m using the Vote.org app. It takes
2 mins! https://votedotorg.outvote.io/vote

Vote.org 45,802

Hey, I’m using this app called Outvote to make sure my friends are registered to
vote and get a reminder on an election day with their polling place. There are
only a few days left, tell your friends! https://campaigns.outvote.io/outvote

OUTVOTE 5,867

OK, I’m voting this year. You? Election Day’s Nov. 6 but MoveOn lets you text
VOTE to 668366 if you want info on voting early or absentee. What do you think?

MoveOn.org 3,668
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Table 2: The refined study population of n=27, 464 subjects.

Assigned Treatment (Zi=1) Assigned Control (Zi=0)

Overall Messaged (Di=1) Not messaged (Di=0) Overall Messaged (Di=1) Not messaged (Di=0)

n 26,010 11,105 14,905 1,454 251 1,203
n voted 20,517 8,804 11,713 1,103 202 901
% voted 78.88 79.28 78.58 75.86 80.48 74.90

Results

Focusing on the 27,464 subjects who (1) were likely to be accurately matched to vote outcomes and (2) had
reconstructed queue positions of 103 or less, we estimate the CACE using the IV estimator in Eq. (2):

dITT= 78.88− 75.86= 3.02 (s.e. 1.10) percentage points.

×CACE=
dITT

11,105
26,010 − 251

1,454

= 11.88 (s.e. 4.37) percentage points.

The effect of assignment (ITT) is estimated to be 3.02 percentage points with a standard error of 1.10.
The average causal effect among compliers is then estimated by dividing thedITT by the estimated share
of compliers, 25.43%, which yields 11.88 percentage points.

Using the formulas from corollary 1 of Aronow and Green [2013], we find that untreated compliers have
an implied turnout rate of 66.88%, whereas treated compliers have an implied turnout rate of 78.48%.
Given the high base rate of voting among compliers in this study, it is interesting that friend-to-friend
appeals elevated turnout so profoundly.

Adding covariates to the model produces somewhat smaller estimates and standard errors. The estimated
ITT is 2.09 percentage points with a standard error of 0.91 percentage points. The covariate-adjusted
estimate of the CACE is 8.26 percentage points (SE= 3.61), which is still quite substantial by the standards
of other large-scale GOTV experiments. We depict the confidence intervals of the covariate-adjusted and
unadjusted estimates of the ITT and CACE in Figs. 3a and 3b.

The appendix presents results from other segments of the subject pool that we excluded from the main
analysis. For example, the estimated CACE among those whose voting records were reliably accessed but
whose queue position cannot be reconstructed is 11.90 (SE = 14.96). Across almost all segments of the
data, well-matched records yield strong but often noisily estimated CACEs, while subjects who were poorly
matched to voter records produce estimated CACEs close to zero, consistent with attenuation bias.

Materials and Methods

CACE estimates and standard errors with and without covariates are obtained using the two-stage least
squares implementation (IV2SLS) in the Python library statsmodels [Seabold and Perktold, 2010] while
ITT estimates and standard errors are obtained using the ordinary least squares (OLS) implementation in
the same library. We have released data for the entire subject pool, stripped of all personally identifying
information (which is sufficient to replicate all ITT/CACE effects without covariates) along with source
code for refining the study population and ITT/CACE estimation.1

Discussion

GOTV campaigns have become increasingly reliant on text messaging. But large-scale texting efforts
typically originate from organizations rather than friends. These tactics often simulate a person-to-person

1https://github.com/aschein/outvote

9

Electronic copy available at: https://ssrn.com/abstract=3696179



0 2 4 6
ITT

0.0

0.1

0.2

0.3

0.4

P
ro

ba
bi

lit
y 

de
ns

ity

no covariates: 3.02
w/ covariates: 2.09

no covariates 95-CI: (0.86, 5.18)
w/ covariates 95-CI: (0.31, 3.87)

(a) ITT estimates and 95% confidence intervals.

0 5 10 15 20 25
CACE

0.00

0.02

0.04

0.06

0.08

0.10

P
ro

ba
bi

lit
y 

de
ns

ity

no covariates: 11.88
w/ covariates: 8.26

no covariates 95-CI: (3.31, 20.45)
w/ covariates 95-CI: (1.18, 15.34)

(b) CACE estimates and 95% confidence intervals.

Figure 3: ITT and CACE estimates with and without covariates.

conversation—if the recipient replies to the text, a campaign worker will engage in conversation—but
actual exchanges are rare, and the effects on turnout tend to be modest. A recent meta-analysis [Green
and Gerber, 2019] estimates their average effect to be 0.29 percentage points, despite the fact that the
automated distribution system successfully delivered texts to more than 90% of targeted voters.

The decentralized friend-to-friend texting effort evaluated here produced much larger turnout effects.
Although fewer than one-third of the intended targets actually received messages, the estimated ITT
effect (2.09 percentage points) is nevertheless many times larger than the apparent effect of automated
texting. The estimated effect among compliers is 8.3 percentage points, one of the strongest effects to
emerge from a large randomized GOTV trial.

What aspects of friend-to-friend texting might account for this unusually strong effect? Three hypotheses
suggest themselves. First, this finding is consistent with a substantial body of experimental evidence
suggesting that personal appeals to vote (e.g., authentic conversations in person or by phone) tend to be
more effective than recorded messages or mass emails [Green and Gerber, 2019]. Second, the effects of
GOTV appeals may be amplified when the messenger is known to the receiver. For example, although
email GOTV messages tend to be ineffective, some small RCTs suggest that email encouragements from
friends can increase turnout substantially [Davenport, 2008]. Third, GOTV effects tend to be enhanced
when senders exert some degree of social pressure, either by suggesting that they are counting on the
recipient to vote and will be disappointed otherwise [Davenport, 2010]. Testing these causal mechanisms
by systematically adding or subtracting aspects of personalization, close personal ties between users and
receivers, and exertion of social pressure is a fruitful line of future inquiry.

Researchers who endeavor to investigate causal mechanisms or the effectiveness of friend-to-friend texting
with different target populations are likely to face a number of trade-offs akin to those that OUTVOTE faced.
OUTVOTE elegantly designed its randomized experiment so as to minimally degrade the user experience.
The upside of this unobtrusive approach is the naturalistic way in which users communicated with the
contacts whom they queued. But the downside is a host of statistical impediments to assessing causal
effects: low compliance rates decrease precision, and mismatched outcome data introduce bias.

While one can imagine more obtrusive approaches that might have mitigated these problems, they come
with changes to the user experience that might preclude any useful data. The app could have dropped
contacts at a higher rate (e.g., 10%), prevented users from re-queuing contacts, or nagged users to finish
messaging everyone they queued. These steps might have increased compliance, but also might have led
users to less natural behavior or even to abandon the service altogether. The app could have also asked
users to furnish information about their contacts, a step that might have improved the rate of accurate
matches to vote outcomes. But requesting this information also changes the user experience and might
drive users away.
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Answering causal questions about authentic friend-to-friend behavior constitutes an important but
challenging class of applications. Experiments suited to answer such questions require light-touch encour-
agements; these help ensure a large n to offset the debilitating statistical consequences of low compliance
rates and unreliable outcome measurement. In the face of such statistical challenges, the methods used
here are essential to accurately estimating causal effects among informative subsets of the subjects.
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A Proof of attenuation bias under non-differential outcome
mismeasurement

When outcomes are binary, the numerator of the IV estimator, which estimates the ITT, equals

E[Yi | Zi=1]−E[Yi | Zi=0] = P(Yi=1 | Zi=1)− P(Yi=1 | Zi=0). (1)

When measurement error is present, we introduce the true outcome Y ?i as a latent variable that is
marginalized out:

=
1∑

y?=0

�
P(Yi=1, Y ?i = y? | Zi=1)− P(Yi=1, Y ?i = y? | Zi=0)

�
. (2)

Due to random assignment of Zi , the mismeasurement is non-differential in the sense that Yi ⊥⊥ Zi |Y ?i
and therefore:

=
1∑

y?=0

�
P(Yi=1 |Y ?i = y?) P(Y ?i = y? | Zi=1)− P(Yi=1 |Y ?i = y?) P(Y ?i = y? | Zi=0)

�
(3)

=
�

P(Yi=1 |Y ?i = 1)− P(Yi=1 |Y ?i = 0)︸ ︷︷ ︸
bias term πBIAS

��
P(Y ?i = 1 | Zi=1)− P(Y ?i = 1 | Zi=0)︸ ︷︷ ︸

true ITT

�
. (4)

If we assume that the magnitude of the measurement error is not too large, so that

P(Yi=1 |Y ?i =1)> P(Yi=1 |Y ?i =0), (5)

then the bias term πBIAS ∈ (0,1] only attenuates the true ITT.
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B Reconstructing queue positions

As discussed in the main paper, a subject’s position Q i in their first queue is a pre-assignment variable
that lets us refine the study population to improve its compliance rate.

OUTVOTE did not explicitly save queue positions. However, it did save data that allows us to reconstruct
them. Specifically, OUTVOTE’s database stored “queuing events”, each of which is a 3-tuple (t, u, r)
consisting of the timestamp t at which user u queued phone contact r. OUTVOTE only recorded a queuing
event if it was subject to randomization—i.e., part of a queue of length five or greater and during the
study period. Queue positions can be reconstructed from the timestamps since the order of subjects in
the queue was the order in which the user queued them.

Our approach to reconstructing queue position involves two basic functions. The first function inputs a
set of queuing events and outputs whether this set meets a minimal plausibility criteria of being a queue.
These criteria are: 1) there are 5 or more queuing events, 2) all events involve the same user, 3) no phone
contact is queued more than once, 4) events are sorted chronologically, and 5) the time between any
two adjacent events is not implausibly long (greater than 1 hour). Algorithm 1 provides pseudocode for
this function.

The second function partitions all queuing events involving the same user into separate queues and then
calls the first function to check that each proposed queue meets the minimal plausibility criteria. If any
one of the proposed queues does not meet the plausibility criteria, then all proposed queues for that user
are nullified. Otherwise, the positions of each subject in the queues are returned. The pseudocode for
this function is given in Algorithm 2.

One wrinkle is that users could press an “Add all” button that would instantly add all of their phone
contacts to the queue. Many users would hit this, then immediately exit the queue, and start a new queue
to which they would add contacts selectively. This user behavior would create many queuing events with
very similar timestamps that included the same contacts twice, thus making it difficult to partition the
queues. To account for this behavior, our criteria for partitioning queuing events into queues is strict:
we consider two events more than 3 seconds apart to be part of different queues. This criteria often
successfully separates the accidental “Add all” events from the subsequent selective queues. It was rare
for users to take longer than 1 second between queuing events within the same queue, as evidenced by
the average time between events for users who only ever queued 9 or fewer contacts (which must all be
part of the same queue since each queue had five or more contacts); thus this strict criteria should rarely
partition a single queue into multiple ones.

With the strict 3-second criteria, the queuing events for 85% of users can be partitioned into queues that
meet the plausibility criteria and the queue position for 60% of eligible subjects can be reconstructed. The
remaining 40% of subjects whose first queue position cannot be reconstructed consist mainly of subjects
who were added by an accidental “Add all”—these subjects exhibit a very low compliance rate of 8% (see
Fig. 2) as would be expected from an accidentally queued subpopulation.
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Algorithm 1 Check if a sequence of queuing events meets the minimal criteria to constitute a valid queue
Input: QUEUINGEVENTS = [(t1, u1, r1), (t2, u2, r2), . . . ], a list of queuing events where each event is a 3-tuple of the timestamp tn
when user un queued the receiver rn.

Output: True or False, whether the list of queuing events constitutes a valid queue.

1: procedure ISVALIDQUEUE(QUEUINGEVENTS)
2: if LENGTH(QUEUINGEVENTS)< 5 then
3: return FALSE . Queues must be length 5 or greater.
4: end if
5: u?← u1 . Get user of first event
6: t?← NaN . Initialize previous timestamp
7: SEENRECEIVERS← [ ] . Initialize set of receivers in this queue
8: for (tn, un, rn) in QUEUINGEVENTS do
9: if rn in SEENRECEIVERS then

10: return FALSE . The same person cannot appear on a queue more than once
11: end if
12: APPEND(SEENRECEIVERS, rn)
13: if un 6= u? then
14: return FALSE . Only one user per queue
15: end if
16: if t? is not NaN then
17: if tn < t? then
18: return FALSE . Queue must be sorted by timestamps
19: end if
20: if (tn − t?) > 1 hour then
21: return FALSE . Time between any two queuing events shouldn’t be implausibly long
22: end if
23: end if
24: t?← tn
25: end for
26: return TRUE

27: end procedure

Algorithm 2 Get queue IDs for queuing events
Input: QUEUINGEVENTS = [(t1, u1, r1), (t2, u2, r2), . . . ], a list of queuing events where each event is a 3-tuple of the timestamp tn
when user un queued the receiver rn.

Output: QUEUINGIDS = [q1, q2, . . . ], a list of queue IDs for every input queuing event.

1: procedure GETQUEUEIDS(QUEUINGEVENTS)
2: q?← 0 . Initialize current queue ID
3: for user u? in UNIQUEVALUES([u1, u2, . . . ]) do
4: t?← NaN . Initialize current timestamp
5: for (tn, un, rn) in QUEUINGEVENTS such that un = u? do
6: if t? is NaN or (tn − t?)> 3 seconds then
7: q?← q? + 1 . Update current queue ID to a new queue
8: end if
9: qn← q? . Assign current queue ID to queuing event

10: t?← tn . Update current timestamp
11: end for
12: end for
13: for queue q? in UNIQUEVALUES([q1, q2, . . . ]) do
14: if not ISVALIDQUEUE([(tn, un, rn) such that qn = q?]) then
15: for qn such that un = u? do
16: qn← NaN . If clustering yields an invalid queue, undo queue IDs for that user
17: end for
18: end if
19: end for
20: end procedure
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C Selecting qmax

As discussed in the main paper, setting a maximum allowable queue position qmax defines a subpopulation
of subjects whose first queue position is Q i ≤ qmax. A smaller value for qmax defines a subpopulation that
is more compliant but also smaller. The variance of the IV estimator is a function of both the compliance
rate and n—thus, there is a tradeoff in selecting qmax to minimize the expected variance. We can write
the IV estimator as an explicit function of qmax,

β̂IV(qmax) =
ȳ1qmax

− ȳ0qmax

d̄1qmax
− d̄0qmax

, (6)

where ȳ1qmax
= Ê [Yi | Zi=1,Q i ≤ qmax] is the mean voting outcome among treatment subjects in the

subpopulation defined by qmax, ȳ0qmax
is the corresponding mean among control subjects, and d̄1qmax

and
d̄0qmax

are the analogous means of receipt.

As mentioned in the main paper, we emphasize that by setting qmax we change the estimand to a conditional
CACE—i.e., β̂IV(qmax) estimates E [Yi1 − Yi0 | i ∈ C and Q i ≤ qmax]. Our approach is analogous to that
of Crump et al. [2006] who also propose a systematic way to trim their sample in order to minimize
the expected variance of the estimator. These approaches seek to estimate the estimand most precisely
estimable albeit with a loss of generalizability. In our case, we do not have reason to believe that the
treatment effect among compliers high in the queue should be different than those low in the queue.

We select qmax to minimize a proxy for the expected variance of the IV estimator, or equivalently, to
maximize its expected power. The expected variance can be written as a function (whose form is given
later) of the following quantities,

V
�
β̂IV(qmax)

�
= f

�
β(qmax), ȳ0qmax

, d̄1qmax
, d̄0qmax

, nqmax
, p
�
, (7)

where β(qmax) is the true effect, nqmax
is the size of the subpopulation, and p=P(Zi=1) is the probability

of being assigned to receive treatment, which is p=0.95 in our case.

We plug-in assumed values for β(qmax) and ȳ0qmax
and empirical values of d̄1qmax

, d̄0qmax
, and nqmax

. Using
the circle notation (◦) to denote assumed quantities, we assume a large true effect size β◦ = 0.1 (10
percentage points), and a control voting rate of ȳ◦0 = 0.7, both of which are constant across qmax. For each
value of qmax we calculate nqmax

from the study population, and estimate the average rates of treatment
receipt d̄1qmax

and d̄0qmax
from the pool of subjects excluded from the analysis due to poor match quality1.

We then select qmax to be,

q∗max← argmin
qmax

f
�
β◦(=0.1), ȳ◦0(=0.7), d̄1qmax

, d̄0qmax
, nqmax

, p(=0.95)
�
, (8)

and get a value of q∗max = 103. This analysis finds the qmax that minimizes the expected variance under
the assumption that the only thing which varies by qmax is nmax and the compliance rate.

The form of the expected variance of the IV estimator f (. . . ) can be obtained using the Delta method [Wasser-
man, 2013, Chevalier, 2017] as

V
�
β̂IV

�
=
σ2

U

µ2
V

− 2
µU

µ3
V

σU ,V +
µ2

U

µ4
V

σ2
V , (9)

1We estimate these quantities using the subjects excluded from the analysis to avoid the poor optics “double-dipping” the same
data to both select qmax and estimate effects. However, we do not believe this is necessary—i.e., using estimates of d̄1qmax

and
d̄0qmax

to select qmax should not introduce confounding since Q i is a pre-assignment variable.
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where the following quantities are defined,

µU = ȳ1 − ȳ0 (10)

µV = d̄1 − d̄0 (11)

σ2
U =

1
n1

ȳ1(1− ȳ1) +
1
n0

ȳ0(1− ȳ0) (12)

σ2
V =

1
n1

d̄1(1− d̄1) +
1
n0

d̄0(1− d̄0) (13)

σU ,V = β σ
2
V . (14)

Here n1 and n0 are the number of subjects in treatment and control groups, ȳ1 and ȳ0 are the outcome
means for subjects in the treatment and control groups, d̄1 and d̄0 are the receipt means, and β is the
true CACE. For our analysis, we plug in assumed values for β = β◦ = 0.1 and ȳ0 = ȳ◦0 = 0.7, which
are constant across proposed values of qmax. We plug in n1=p nqmax

and n0=(1−p)nqmax
based on nqmax

calculated from the study population. We also plug in d̄1 = d̄1nqmax
and d̄0 = d̄0nqmax

based on sample
means from the subjects excluded from analysis due to poor match quality. The value of ȳ1 is determined
by the other plug-in values—i.e., ȳ1 = β(d̄1 − d̄0) + ȳ0.

To better interpret the results, we report the expected power. Our power analysis asks: what is the
probability of rejecting the null hypothesis of a zero effect, given that the true effect is large? Power is
a function of the expected variance of the estimator and the assumed true effect:

Power(β̂IV(qmax);β
◦) = P(reject H0 : β=0 |β = β◦) = 1−Φ

�
1.96− β◦Ç

V(β̂IV(qmax))

�
. (15)

Power incorporates the scale of the standard error in relation to the scale of the effect size. A standard
error of 1 is small if the true effect size is 15 but large if the true effect size is 0.1. Power synthesizes
the expected error and the assumed effect size into a single number between 0 and 1. Assuming a large
CACE of 0.1, we see in Fig. 1 that power declines significantly after qmax = 103 while the corresponding
increase in standard error is less evident due to scale of the y-axis.

D Balance checks

We use the pre-assignment covariates from the TARGETSMART database to perform balance checks on
subpopulations of the subject pool which test the null hypothesis that the covariates are no better than
random at predicting subjects’ assignments. For any subset of subjects, we fit the following ordinary least
squares (OLS) regression,

Zi = w0 + w>X i + εi . (16)

An F -test of this regression is a test of the null hypothesis that the covariates X i are not predictive of the
dependent variable Zi; we report the p-value of this F -test. A balance check fails when a small p-value
indicates that that the null hypothesis is unlikely and thus that the assigned treatment and control groups
do not exhibit symmetry.

We report the balance check’s p-value for all subpopulations in Fig. 2—all pass the check. Since Zi is
randomized, we do not expect any subpopulation to fail the balance check; this exercise serves simply
to provide empirical support that randomization was correctly implemented and our definition of the
treatment-control split maintains symmetry between the two groups.

As mentioned in footnote 1 of the main paper, a possibly tempting alternative definition of the treatment–
control split defines the control group to consist of subjects who were skipped in all queues in which they
appeared (as opposed to only their first queue, the definition we adopt in this study). In this case, the
probability of being assigned to receive treatment depends on how many queues a subject appeared in
k—i.e., P(Zi = 1) = 1− 0.05k. However, this definition introduces a confounder, since every queue after
the first is potentially affected by the user noticing the subject being skipped (or not skipped) the first
time. Indeed, the study population defined in this way fails the balance check, producing a p-value of
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Figure 1: Tradeoff.

0.01, suggesting that the covariates X i are predictive of assignment Zi and thus that Zi is not random.
This is likely due to the fact that users were more likely to notice if a subject higher in the queue was
skipped and thus were more likely to re-queue higher-ranked subjects. Since OUTVOTE’s ranking of
subjects in the queuing phase used covariate information from the voter rolls, systematically re-queuing
higher-ranked subjects induces confounding that is detected by a balance check. A previous version of
this study, described in a pre-analysis plan registered with EGAP2, employed this confounded definition
of treatment–control.

E Subject flow diagram

We depict how subjects were selected for analysis in Fig. 2. Box 1 represents the total number of unique
mobile phone numbers that users added to queues (n=546,510). Of these, only n=195,118 met the
minimal eligibility criteria of having been successfully matched to public voter rolls and being registered
to vote prior to the study (Box 3). Every node in the flow diagram below and including Box 3, represents a
specific subset of eligible subjects. Each node is annotated with: 1) the number n of subjects in that subset,
2) the ITT and CACE estimates for that subset, and 3) the p-value from a balance check that tests the null
hypothesis of symmetry between the assigned treatment and control groups (see Appendix D).

The first refinement of the eligible subject pool, labeled “Measurement Error” in Fig. 2, involves subjects
who were well-matched (Box 4: n=56, 154) versus poorly matched (Box 5: n=138, 964) to the public
voter rolls. As described in the main text, we consider a subject to be well-matched if both OUTVOTE and
PREDICTWISE matched them to the same entry—we assume that interannotator agreement in a subject’s
match is an indicator of the match’s accuracy. The data support this assumption: the ITT estimate in the

2https://egap.org/content/effect-relational-text-messaging-turnout-2018-us-midterm-elections (this link may be down
due to EGAP migrating to Open Science Framework).
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poorly matched population (Box 5) is nearly zero, -0.03 (s.e. 0.57), which is consistent with attenuation
bias expected under measurement error.

The next two refinements, labeled “Non-compliance”, seek to improve the compliance rates of the study
population. The first refinement considers subjects whose position in their first queue can (Box 6: n=
34, 200) versus cannot (Box 7: n=21, 954) be reconstructed from timestamp information of when users
added subjects to their queues. The major contributing factor to why timestamps do not always reconstruct
subjects’ queue position is due to users accidentally pressing an “Add all” button (see Appendix B). The
compliance rate among the subjects whose queue position cannot be reconstructed (Box 7) is low (9%),
as would be expected from a subpopulation of subjects who were accidentally added to queues.

The final refinement considers subjects who were within the top qmax=103 positions in their first queue
(Box 8: m=27, 464) versus those who were not (Box 9: n=6, 736). The compliance rate among subjects
whose position was greater than 103 (Box 9) is very low (3%)—as a result, the standard error of the
CACE estimate for that subpopulation is very high (126.24 percentage points). Box 8 represents the
refined study population which we use to estimate the results presented in the main text.

 Queue position can be reconstructed (n=34,200)

ITT: 1.83 (s.e. 1.01)
CACE: 8.77 (s.e. 4.85)
Compliance rate: 21%

Balance check p-value: 0.81

 Queue position greater than 103 (n=6,736)

ITT: -3.27 (s.e. 2.49)
CACE: -115.39 (s.e. 126.24)

Compliance rate: 3%
Balance check p-value: 0.54

 Queue position less than or equal to 103 (n=27,464)

ITT: 3.02 (s.e. 1.10)
CACE: 11.88 (s.e. 4.37)
Compliance rate: 25%

Balance check p-value: 0.50

 Queue position cannot be reconstructed (n=21,954)

ITT: 1.05 (s.e. 1.31)
CACE: 11.82 (s.e. 14.86)

Compliance rate: 9%
Balance check p-value: 0.35

Assessed for eligibility (n=546,510)
1

    Outvote and Predictwise agree on match (n=56,154)

ITT: 1.52 (s.e. 0.80)
CACE: 9.41 (s.e. 4.97)
Compliance rate: 16%

Balance check p-value: 0.90

4

   Excluded (n=351,392)

▪ Not matched to voter rolls (n=333,489)
▪ Matched but not registered to vote (n=17,903)

2

Eligible subject pool (n=195,118)

ITT: 0.40 (s.e. 0.47)
CACE: 2.42 (s.e. 2.84)
Compliance rate: 16%

Balance check p-value: 0.37

3

   Outvote and PredictWise disagree on match (n=138,964)

ITT: -0.03 (s.e. 0.57)
CACE: -0.21 (s.e. 3.42)
Compliance rate: 17%

Balance check p-value: 0.30

5

6 7

8 9

Measurement Error

Non-compliance

Non-compliance

Figure 2: Subject flow diagram.
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F Further details on matching subjects to voter rolls

OUTVOTE’s matching algorithm was based on the subject’s mobile phone number and the first and last
name fields stored in the user’s phone contacts. OUTVOTE’s algorithm first checked whether there was any
unique match of a person with the exact first and last name registered in the precinct associated with the
mobile phone number’s area code. If this failed, the algorithm entered the mobile phone number into an
API that sometimes returned the first and last name of the person who paid the mobile phone number’s bill,
or who was otherwise associated with the phone number. The algorithm would try again to find a unique
match using this alternative name. The algorithm also relied on a gazetteer of common name shortenings
(e.g., Richard: Dick, Rich, Ricky,...) to find non-exact matches, when the previous attempts failed.

PREDICTWISE has on a number of commercially-available marketing databases that associates mobile
phone numbers with an extensive set of demographic information that is useful for matching phone
numbers to the voter rolls. The data we obtained from PREDICTWISE contains millions of pairs of mobile
phone numbers and voter roll IDs. A phone number may be associated with multiple voter roll IDs in
this data set.

We assume that instances where OUTVOTE’s matches appear in PREDICTWISE’s data, are much less likely to
be misclassified than matches that do not. One reasonable question is why not simply use PREDICTWISE’s
matches, ignoring OUTVOTE’s. First, a give subject (i.e., mobile phone number) is associated with multiple
voter roll entries by PREDICTWISE—it’s not clear how to decide among them, if we are not using OUTVOTE’s
match to disambiguate. Second, OUTVOTE’s match was made at the time of the study, while PREDICTWISE

may have matched the same mobile phone number to a voter ID years earlier, when the phone number
belonged to someone else. Third, it’s important to condition on which identity OUTVOTE matched a
subject to, even if that identity was incorrect: since OUTVOTE presented that information to users and used
it to rank subjects, it still likely helps reduce error of the CACE, when conditioning on covariates.

G Messages

Users could either send default messages or craft their own. The vast majority of messages were either
the exact default message or a minor variant (e.g., with an emoticon inserted, or the recipient’s name
edited). Based on simple string matching to default templates, we estimate that about 98% of the 132,318
messages sent were the default message or minor variants.

Users participated in different campaigns, each of which provided their own default message. The vast
majority of messages are part of a campaign by Vote.org or OUTVOTE’s “Text Every Voter” campaign. The
most-used default message accounts for 45,802 messages (about 35% of all sent messages); we show the
10 most-used default messages in Table 1, which account for over 55% of all sent messages.

Users participated in 72 unique campaigns during the study period. While 67 of these campaigns were
partisan, the vast majority of user activity was accounted for by the non-partisan campaigns. About 88% of
sent messages were part of a non-partisan campaign, like Vote.org or OUTVOTE’s “Text Every Voter”.
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Table 1: Top ten most-used default messages in descending order. These account for 55% of
all sent messages.

Message template Campaign # of messages % of all messages

Hey {FIRST_NAME}, I’m reminding all my friends to vote on Tue, Nov 6th!
You can find your polling place at polls.vote.org. I’m using the Vote.org app.
It takes 2 mins! https://votedotorg.outvote.io/vote

Vote.org 45,802 35.6%

Hey, I’m using this app called Outvote to make sure my friends are registered to
vote and get a reminder on an election day with their polling place. There are
only a few days left, tell your friends! https://campaigns.outvote.io/outvote

OUTVOTE 5,867 4.4%

Hey, I’m using this app called Outvote to make sure my friends are registered
to vote and get a reminder on an election day with their polling place. If you
want one just text “vote” to (202) 868-8683.

OUTVOTE 5,761 4.4%

OK, I’m voting this year. You? Election Day’s Nov. 6 but MoveOn lets you text
VOTE to 668366 if you want info on voting early or absentee. What do you
think?

MoveOn.org 3,668 2.8%

Hey {FIRST_NAME}, Hey are you sure you’re registered to vote at
the right address? I’m reminding all my friends to double check:
https://www.vote.org/am-i-registered-to-vote/

Vote.org 3,328 2.5%

Hey, I’m using this app called Outvote to remind my friends to vote! If you
want to help, it tells you who you know in swing districts too.

OUTVOTE 2,610 2.0%

Hey! Please don’t forget to vote on Nov 6th! It’s going to be really close, and
we have to make our voices heard. If you’re not sure where your polling place
is, check out vote.org.

Vote.org 2,501 1.9%

I know you’re gonna vote on November 6th DUH, but make sure to remind
your friends, too! Download Outvote and find out who you know in swing
districts :D https://campaigns.outvote.io/outvote

OUTVOTE 2,248 1.7%

Hey, I’m reminding my friends to check that they’re registered at the right
address this year just in case they forget. You can check in a few minutes right
here: https://www.vote.org/am-i-registered-to-vote/

Vote.org 1,132 0.9%

Hey, are you registered to vote? It only takes 2 minutes:
https://www.vote.org/register-to-vote/

Vote.org 1,073 0.8%
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H Covariates from TARGETSMART voter roll database

A rich set of covariates on subjects is available from the TARGETSMART voter roll database. OUTVOTE

matched subjects to the voter roll database prior to users adding subjects to queues. We use a set of 85
covariates that were recorded prior to random assignment of subjects; these covariates are listed and
described in Tables 2 to 11.

Table 2: Pre-assignment covariates. Descriptions are from TARGETSMART documentation.

Mean by group

Variable name Variable support Description Zi=1 Zi=0

vb.education {1, . . . , 6} Indicates the highest level of education completed by the individual 2.38 2.32

vb.discretionary_income_decile {0, . . . , 10} Household-level ranking within a geographic area of the annual amount
of discretionary income of the household. Ranking of the amount of cash
a household has after paying for essentials such as food, electricity, taxes,
education and mortgage. 1 - Highest 10 - lowest

3.71 3.70

vb.recession_sensitivity_decile {0, . . . , 10} Household-level ranking within a geographic area of how sensitive the
household is to the recession

3.68 3.74

vb.vehicle_value_decile {0, . . . , 10} Decile ranking of household’s propensity to invest highly in automobiles
(1 = most likely, 10 = least likely)

2.81 2.81

voter_score_index {0, . . . , 4} Roll-up grouping of voters based on prior election turnout 2.84 2.79

vb.voterbase_general_votes {0, 1, . . . } Indicates the number of elections a voter has voted in within all available
general elections

5.59 5.45

vb.voterbase_primary_votes {0, 1, . . . } Indicates the number of elections a voter has voted in within all available
primary elections

2.12 1.98

vb.voterbase_age {18, 19, . . . } Indicates the individual’s age, if available, and calculated from the Voter-
Base Date of Birth

46.64 46.76

vb.number_of_adults_in_household {0, 1, . . . } Indicates the number of adults 18 years or older within the household 1.70 1.74

vb.number_of_children_in_household {0, 1, . . . } Indicates the number of children age 0-17 living within the household 0.37 0.40

vb.household_income_amount [0,∞) Indicates the estimated income amount of a household in $1000 increments 98.88 99.61

vb.mortgage_amount [0,∞) Estimated mortgage loan amount in $1000 increments 22.85 23.80

vb.home_value_amount [0,∞) Estimated home value in $1000 increments 55.29 56.62

vb.home_equity_amount [0,∞) Estimated amount of equity held in home in $1000 increments 36.54 38.71

vb.length_of_residence_in_years {0, 1, . . . } Indicates the length of residence at current address in years 5.37 5.35
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Table 3: Pre-assignment covariates (continued). Descriptions are from TARGETSMART documentation.

Mean by group

Variable name Variable support Description Zi=1 Zi=0

voted_g2008 {0, 1} Voted in 2008 General election (1=Yes, 0=No) 0.66 0.66

voted_g2010 {0, 1} Voted in 2010 General election (1=Yes, 0=No) 0.49 0.49

voted_g2012 {0, 1} Voted in 2012 General election (1=Yes, 0=No) 0.75 0.73

voted_g2014 {0, 1} Voted in 2014 General election (1=Yes, 0=No) 0.52 0.51

voted_g2016 {0, 1} Voted in 2016 General election (1=Yes, 0=No) 0.85 0.85

voted_p2008 {0, 1} Voted in 2008 Primary election (1=Yes, 0=No) 0.20 0.19

voted_p2010 {0, 1} Voted in 2010 Primary election (1=Yes, 0=No) 0.20 0.18

voted_p2012 {0, 1} Voted in 2012 Primary election (1=Yes, 0=No) 0.19 0.19

voted_p2014 {0, 1} Voted in 2014 Primary election (1=Yes, 0=No) 0.19 0.19

voted_p2016 {0, 1} Voted in 2016 Primary election (1=Yes, 0=No) 0.38 0.36

ts.tsmart_presidential_general_turnout_score [0,100] Presidential General Turnout Score: These models were created to
predict the likelihood that an individual will vote in each specific type
of Election year. They are meant to replace the yearly turnout models
we have created in the past and will now update automatically as
we receive new demographic and vote history data from similar past
elections.

65.32 63.89

ts.tsmart_presidential_primary_turnout_score [0,100] Presidential Primary Turnout Score: These models were created to
predict the likelihood that an individual will vote in each specific type
of Election year. They are meant to replace the yearly turnout models
we have created in the past and will now update automatically as
we receive new demographic and vote history data from similar past
elections.

38.48 37.04

ts.tsmart_midterm_general_turnout_score [0,100] Midterm General Turnout Score: These models were created to predict
the likelihood that an individual will vote in each specific type of
Election year. They are meant to replace the yearly turnout models
we have created in the past and will now update automatically as
we receive new demographic and vote history data from similar past
elections.

52.97 52.21

ts.tsmart_offyear_general_turnout_score [0,100] Off-Year General Turnout Score: These models were created to predict
the likelihood that an individual will vote in each specific type of
Election year. They are meant to replace the yearly turnout models
we have created in the past and will now update automatically as
we receive new demographic and vote history data from similar past
elections.

31.74 31.36

ts.tsmart_non_presidential_primary_turnout_score [0,100] Non-Presidential Year Primary Turnout Score: These models were
created to predict the likelihood that an individual will vote in each
specific type of Election year. They are meant to replace the yearly
turnout models we have created in the past and will now update
automatically as we receive new demographic and vote history data
from similar past elections.

39.55 38.38
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Table 4: Pre-assignment covariates (continued). Descriptions are from TARGETSMART documentation.

Mean by group

Variable name Variable support Description Zi=1 Zi=0

ts.tsmart_local_voter_score [0, 100] An ensemble method classifier model was created to predict the like-
lihood that an individual will vote in local, county, and municipal
elections. The model was constructed using live telephone interviews
conducted in the first quarter of 2016. A representative sample of the
nation was collected by calling both landline and wireless numbers in
every state. Interviewees were asked if they vote in local, county, and
municipal elections where very few people vote. The model scores
are expressed from 0-100, with the score representing the probability
that person will vote in a local election. The model was used to score
over 240 million voting age persons nationwide.

35.08 34.56

ts.tsmart_activist_score [0, 100] Predicts the likelihood that an individual is an activist 51.15 50.51

ts.tsmart_campaign_finance_score [0, 100] Model score (0-100) constructed from live and IVR survey responses,
collected nationwide in early 2016, indicating support for the follow-
ing proposal: "Limiting the amount of money that any individual or
group can donate to a political campaign." Higher scores are more
likely to favor this position.

59.38 59.70

ts.tsmart_catholic_raw_score [0, 100] For the Catholic score, voters are assigned a likelihood rating from 1
(very unlikely) to 4 (very likely). These ratings are based on models
of survey-reported religious affiliation, which predict responses as a
function of demographic characteristics, local patterns of religious
affiliation and attendance, and other individual- and aggregate-level
data. Predicted probabilities greater than 50% are coded as 4 (“very
likely”), those between 25% and 50% as 3 (“somewhat likely”), those
between 10% and 25% as 2 (“somewhat unlikely”), and those below
10% as 1 (“very unlikely”). The probabilities across all categories sum
to 100%, so with these thresholds, a voter can have at most one “very
likely” religion.

18.03 17.64

ts.tsmart_children_present_score [0, 100] The Presence of Children score represents the probability that an
individual voter lives in a household with children under age 18. The
score is based on models predicting responses from more than 49,000
live interviews with voters nationwide from January 2013 to present.
The scores are on a scale from 0-100, with higher scores representing
a higher probability that a person lives in a household with children.

28.81 29.33

ts.tsmart_climate_change_score [0, 100] Model score (0-100) constructed from live and IVR survey responses,
collected nationwide in early 2016, indicating support for the follow-
ing proposal: "Imposing tougher environmental regulations in order
to combat climate change." Higher scores are more likely to favor this
position.

76.53 75.82

ts.tsmart_college_funding_score [0, 100] Model score (0-100) constructed from live and IVR survey responses,
collected nationwide in early 2016, indicating support for the follow-
ing proposal: "Raising government spending on student aid to make
college more affordable." Higher scores are more likely to favor this
position.

66.97 67.56

ts.tsmart_college_graduate_score [0, 100] Model score (0-100) constructed from live and IVR survey responses,
collected nationwide in early 2016, indicating support for the follow-
ing proposal: "Raising government spending on student aid to make
college more affordable." Higher scores are more likely to favor this
position.

60.93 59.68
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Table 5: Pre-assignment covariates (continued). Descriptions are from TARGETSMART documentation.

Mean by group

Variable name Variable support Description Zi=1 Zi=0

ts.tsmart_evangelical_raw_score [0, 100] For the Evangelical score, voters are assigned a likelihood rating from
1 (very unlikely) to 4 (very likely). These ratings are based on models
of survey-reported religious affiliation, which predict responses as a
function of demographic characteristics, local patterns of religious
affiliation and attendance, and other individual- and aggregate-level
data. Predicted probabilities greater than 50% are coded as 4 (“very
likely”), those between 25% and 50% as 3 (“somewhat likely”), those
between 10% and 25% as 2 (“somewhat unlikely”), and those below
10% as 1 (“very unlikely”). The probabilities across all categories sum
to 100%, so with these thresholds, a voter can have at most one “very
likely” religion.

18.24 19.31

ts.tsmart_govt_privacy_score [0, 100] Model score (0-100) constructed from live and IVR survey responses,
collected nationwide in early 2016, indicating opposition to the follow-
ing proposal: "Allowing increased surveillance of US citizens phones
and emails in order to prevent terror attacks." Higher scores are more
likely to oppose this position.

52.51 52.81

ts.tsmart_gun_control_score [0, 100] Model score (0-100) constructed from live and IVR survey responses,
collected nationwide in early 2016, indicating support for the fol-
lowing proposal: "Limiting access to guns through legislation which
tightens background checks and restricts the purchase of military-style
weapons." Higher scores are more likely to favor this position.

74.63 74.01

ts.tsmart_gunowner_score [0, 100] Predicts the likelihood that an individual is a gun owner 39.85 40.74

ts.tsmart_high_school_only_score [0, 100] The High School Education Only score represents the probability that
an individual voter has a high school education or less. The score is
based on models predicting responses from more than 49,000 live
interviews with voters nationwide from January 2013 to present. The
scores are on a scale from 0-100, with higher scores representing a
higher probability that a person has only a high school education.

32.10 33.58

ts.tsmart_ideology_score [0, 100] An ensemble method classifier model was created to predict the like-
lihood that an individual supports liberal ideology. The model was
constructed using live telephone interviews conducted in the first
quarter of 2016. A representative sample of the nation was collected
by calling both landline and wireless numbers in every state. Intervie-
wees were asked if they are liberal, moderate, or conservative. The
model scores are expressed from 0-100, with the score representing
the probability that person supports liberal ideology. The model was
used to score over 190 million voters nationwide.

67.26 66.86

ts.tsmart_income_rank_score [0, 100] The Income Rank score represents the probability that an individual
voter has a high income. The scores are presented on a scale from
0-100, with higher scores representing a greater probability that a
person has a high income.

52.34 52.89

ts.tsmart_marriage_score [0, 100] The Marital Status score represents the probability that an individual
voter is married. The score is based on models predicting responses
from more than 49,000 live interviews with voters nationwide from
January 2013 to present. The scores are on a scale from 0-100,
with higher scores representing a higher probability that a person is
married.

41.49 42.40
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Table 6: Pre-assignment covariates (continued). Descriptions are from TARGETSMART documentation.

Mean by group

Variable name Variable support Description Zi=1 Zi=0

ts.tsmart_midterm_general_enthusiasm_score [0,100] Description left blank in TARGETSMART documentation 0.06 0.05

ts.tsmart_minimum_wage_score [0,100] Model score (0-100) constructed from live and IVR survey responses,
collected nationwide in early 2016, indicating support for the fol-
lowing proposal: "Raising the minimum wage paid by all employers
nationwide." Higher scores are more likely to favor this position.

63.37 63.77

ts.tsmart_moral_authority_score [0,100] An ensemble method classifier model was created to predict the likeli-
hood (0-100, ascending) that an individual aligns with the Authority
pillar, defined as follows: "shaped by our long primate history of
hierarchical social interactions. It underlies virtues of leadership and
followership, including deference to legitimate authority and respect
for traditions." The models were constructed using results from a
telephone survey conducted between February 24 - March 2, 2016.

34.24 34.93

ts.tsmart_moral_care_score [0,100] An ensemble method classifier model was created to predict the like-
lihood (0-100, ascending) that an individual aligns with the Care
pillar, defined as follows: "an ability to feel (and dislike) the pain of
others. It underlies virtues of kindness, gentleness, and nurturance."
The models were constructed using results from a telephone survey
conducted between February 24 - March 2, 2016.

49.34 49.47

ts.tsmart_moral_equality_score [0,100] An ensemble method classifier model was created to predict the like-
lihood (0-100, ascending) that an individual aligns with the Equality
pillar, defined as follows: "feelings of reactance and resentment peo-
ple feel toward those who dominate them and restrict their liberty. Its
intuitions are often in tension with those of the authority foundation."
The models were constructed using results from a telephone survey
conducted between February 24 - March 2, 2016.

52.74 52.64

ts.tsmart_moral_equity_score [0,100] An ensemble method classifier model was created to predict the like-
lihood (0-100, ascending) that an individual aligns with the Equity
pillar, defined as follows: "related to the evolutionary process of re-
ciprocal altruism. It generates ideas of justice, rights, and autonomy."
The models were constructed using results from a telephone survey
conducted between February 24 - March 2, 2016.

43.50 44.12

ts.tsmart_moral_loyalty_score [0,100] An ensemble method classifier model was created to predict the like-
lihood (0-100, ascending) that an individual aligns with the Loyalty
pillar, defined as follows: "related to our long history as tribal crea-
tures able to form shifting coalitions. It underlies virtues of patriotism
and self-sacrifice for the group. It is active anytime people feel that
it’s ’one for all, and all for one.’" The models were constructed using
results from a telephone survey conducted between February 24 -
March 2, 2016.

47.32 47.61
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Table 7: Pre-assignment covariates (continued). Descriptions are from TARGETSMART documentation.

Mean by group

Variable name Variable support Description Zi=1 Zi=0

ts.tsmart_moral_purity_score [0,100] An ensemble method classifier model was created to predict the like-
lihood (0-100, ascending) that an individual aligns with the Purity
pillar, defined as follows: "shaped by the psychology of disgust and
contamination. It underlies religious notions of striving to live in an
elevated, less carnal, more noble way. It underlies the widespread
idea that the body is a temple which can be desecrated by immoral
activities and contaminants (an idea not unique to religious tradi-
tions)." The models were constructed using results from a telephone
survey conducted between February 24 - March 2, 2016.

37.80 38.01

ts.tsmart_nonchristian_raw_score [0,100] For the Non-Christian score, voters are assigned a likelihood rating
from 1 (very unlikely) to 4 (very likely). These ratings are based
on models of survey-reported religious affiliation, which predict re-
sponses as a function of demographic characteristics, local patterns
of religious affiliation and attendance, and other individual- and
aggregate-level data. Predicted probabilities greater than 50% are
coded as 4 (“very likely”), those between 25% and 50% as 3 (“some-
what likely”), those between 10% and 25% as 2 (“somewhat un-
likely”), and those below 10% as 1 (“very unlikely”). The probabilities
across all categories sum to 100%, so with these thresholds, a voter
can have at most one “very likely” religion.

26.37 26.38

ts.tsmart_otherchristian_raw_score [0,100] For the Christian (other) score, voters are assigned a likelihood rating
from 1 (very unlikely) to 4 (very likely). These ratings are based
on models of survey-reported religious affiliation, which predict re-
sponses as a function of demographic characteristics, local patterns
of religious affiliation and attendance, and other individual- and
aggregate-level data. Predicted probabilities greater than 50% are
coded as 4 (“very likely”), those between 25% and 50% as 3 (“some-
what likely”), those between 10% and 25% as 2 (“somewhat un-
likely”), and those below 10% as 1 (“very unlikely”). The probabilities
across all categories sum to 100%, so with these thresholds, a voter
can have at most one “very likely” religion.

24.61 24.96

ts.tsmart_paid_leave_score [0,100] Model score (0-100) constructed from live and IVR survey responses,
collected nationwide in early 2016, indicating support for the follow-
ing proposal: "Requiring all employers, including small businesses, to
provide paid time off when their workers are ill, have a new child, or
need to care for sick family members." Higher scores are more likely
to favor this position.

63.95 64.49

ts.tsmart_partisan_score [0,100] An ensemble method classifier model was created to predict the like-
lihood that an individual supports the Democratic Party. The model
was constructed using live telephone interviews conducted in the
first quarter of 2016. A representative sample of the nation was col-
lected by calling both landline and wireless numbers in every state.
Interviewees were asked a generic two-way congressional vote choice
question and a generic two-way presidential vote choice question. The
model scores are expressed from 0-100, with the score representing
the probability that person supports the Democratic Party. The model
was used to score over 240 million voting age persons nationwide.

79.84 79.37
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Table 8: Pre-assignment covariates (continued). Descriptions are from TARGETSMART documentation.

Mean by group

Variable name Variable support Description Zi=1 Zi=0

ts.tsmart_path_to_citizen_score [0, 100] Model score (0-100) constructed from live and IVR survey responses,
collected nationwide in early 2016, indicating support for the fol-
lowing proposal: "Creating a path to citizenship for undocumented
immigrants." Higher scores are more likely to favor this position.

72.81 72.25

ts.tsmart_prochoice_score [0, 100] Model score (0-100) constructed from live and IVR survey responses,
collected nationwide in early 2016, indicating opposition to the follow-
ing proposal: "Placing more restrictions on abortion, such as waiting
periods and mandatory ultrasounds." Higher scores are more likely to
oppose this position.

77.14 76.45

ts.tsmart_tax_on_wealthy_score [0, 100] Model score (0-100) constructed from live and IVR survey responses,
collected nationwide in early 2016, indicating support for the follow-
ing proposal: "Increasing taxes on the wealthy in order to improve
infrastructure and government services and reduce the budget deficit."
Higher scores are more likely to favor this position.

67.14 67.39

ts.tsmart_teaparty_score [0, 100] An ensemble method classifier model was created to predict the like-
lihood that an individual supports the Tea Party movement. The
model was constructed using live telephone interviews conducted in
the first quarter of 2016. A representative sample of the nation was
collected by calling both landline and wireless numbers in every state.
Interviewees were asked if they agree, disagree, or have no opinion
concerning the Tea Party movement. The model scores are expressed
from 0-100, with the score representing the probability that person
supports the Tea Party movement. The model was used to score over
240 million voting age persons nationwide.

30.81 30.74

ts.tsmart_trump_resistance_score [0, 100] Predicts the likelihood that an individual is part of the Trump resis-
tance

55.50 55.08

ts.tsmart_trump_support_score [0, 100] Predicts the likelihood that an individual supports Donald Trump 26.52 27.81

ts.tsmart_veteran_score [0, 100] Predicts the likelihood that an individual is a Military Veteran or Active
Military Service Member

27.99 28.10

ts.tsmart_working_class_score [0, 100] Description left blank in TARGETSMART documentation 44.87 45.82

predictwise.authoritarianism_score [0, 100] The Predictwise authoritarianism score measures the probability that
an individual prefers central authority. The model was created using
questions about free speech, obedience, and respect for authority. The
score ranges from 0-100, with 0 being not at all authoritarian, and
100 being extremely authoritarian.

39.05 39.07

predictwise.compassion_score [0, 100] The Predictwise compassion score aims to define an individual’s com-
passion for those who are less fortunate than them. The model was
built off questions about disability, homelessness, and reformed crimi-
nals. The score ranges from 0-100, with 0 being not at all compas-
sionate, and 100 being extremely compassionate.

70.34 70.13
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Table 9: Pre-assignment covariates (continued). Descriptions are from TARGETSMART documentation.

Mean by group

Variable name Variable support Description Zi=1 Zi=0

predictwise.economic_populism_score [0,100] The Predictwise economic populism score measures the likelihood
of an individual being an economic populist, meaning that they be-
lieve that the government should provide assistance to the struggling
working class. The model was build off questions about unions, big
business, and social safety nets. The score ranges from 0-100, with 0
being not at all populist, and 100 being extremely populist.

65.67 65.53

predictwise.free_trade_score [0,100] The Predictwise free trade score measures the probability that an
individual supports free trade. The model was build using questions
about the trade-offs between more/cheaper goods and quality control,
stress on the border, and jobs moving from established industries to
newer industry. The score ranges from 0-100, with 0 being entirely
unsupportive of free trade, and 100 being fully supportive of free
trade.

58.00 58.08

predictwise.globalism_score [0,100] The Predictwise Globalism score measures the probability that an
individual has globalist beliefs, meaning they believe that the US
should be open as a society. The model was built off questions about
trade, automation, and fears about a global economy. The score
ranges from 0-100, with 0 meaning that an individual is not at all
globalist, and 100 meaning that an individual is extremely globalist.

44.81 44.67

predictwise.guns_score [0,100] The Predictwise guns score measures the probability of an individual
supporting the freedom to own and/or buy guns. The model was build
using questions about individuals’ support for citizens owning assault
weapons, carrying concealed weapons, and for the government to
register gun owners. The score ranges from 0-100, with 0 meaning
that an individual is extremely nonsupporting of the freedom to own
and buy guns, and 100 meaning that an individual fully supports the
freedom to buy and own guns.

45.02 45.07

predictwise.healthcare_score [0,100] The Predictwise score measures the likelihood that an individual
supports government provided healthcare. The model was built off
individuals’ attitudes toward government subsidized healthcare for
the poor, people with pre-existing conditions, the elderly, and mothers
and newborns. The score ranges from 0-100, with 0 meaning an
individual does not support government provided healthcare and 100
meaning an induvial is supportive of government provided healthcare.

55.81 55.97

predictwise.healthcare_women_score [0,100] The Predictwise women’s healthcare score measures the probability of
an individual supporting women’s healthcare and reproductive rights.
The model was built off individuals’ attitudes towards womens’ and
girls’ healthcare, access to birth control without parental consent,
comprehensive sexual education, and access to abortion in different
circumstances. The score ranges from 0-100, with 0 meaning an
individual does not support women’s healthcare and reproductive
rights, and 100 meaning an individual is fully supportive of women’s
healthcare and reproductive rights.

78.38 78.27
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Table 10: Pre-assignment covariates (continued). Descriptions from TARGETSMART documentation.

Mean by group

Variable name Variable support Description Zi=1 Zi=0

predictwise.immigrants_score [0,100] The Predictwise immigrant score measures the probability that some-
one is supportive of immigrants. The model was built off questions
that gauged individuals’ opinions on legal versus illegal immigration,
refugees, the trade-offs with national security and job security and
open immigration. The score ranges from 0-100, with 0 meaning
an individual does not support immigration, and 100 meaning an
individual is fully supportive of immigration.

57.17 57.05

predictwise.military_score [0,100] The Predictwise military score measures the probability that some-
one supports an expansive military role. The model was built based
off questions about securing US territories, protecting trade routes,
spreading democracy, and countering terrorism. The model ranges
from 0-100, with 0 meaning an individual does not support an expan-
sive military role, and 100 meaning an individual is fully supportive
of an expansive military role.

43.02 43.33

predictwise.poor_score [0,100] The Predictwise safety net for poor score measures the probability
that an individual is supportive of a safety net for the poor. The model
was built based on attitudes about education, healthcare, shelter, food,
and employment for the poor. The model ranges from 0-100 with 0
meaning an individual is not supportive of a safety net for the poor,
and 100 meaning an individual is fully supportive of a safety net for
the poor.

58.39 58.43

predictwise.populism_score [0,100] The Predictwise anti-elitist populism score measures the probability
that an individual is an anti-elitist populist, meaning that they believe
there is a struggle between “the people” and “the elite”. The model
was built using questions about trust in elites, the distribution of
power, and thoughts on the “system”. The score ranges from 0-100,
with 0 meaning that an individual is not at all populist, and 100
meaning an individual is extremely populist.

51.15 51.28

predictwise.presidential_score [0,100] The Predictwise presidential score measures the probability that an
individual views Trump as presidential. The model was built based
off questions explicitly about President Trump, including his appro-
priateness, honestly, morality, competence, and work ethic. The score
ranges from 0-100, with 0 meaning an individual does not view Trump
as presidential at all, and 100 meaning an individual views trump as
extremely presidential.

41.66 41.97

predictwise.racial_resentment_score [0,100] The Predictwise racial resentment score measures the probability that
an individual is racially resentful. The model was built off questions
pertaining to black work ethic, historical discrimination, crime, and
black protest. The score ranges from 0-100, with 0 meaning an indi-
vidual is not at all racially resentful, and 100 meaning an individual
is extremely racially resentful.

62.80 62.61

predictwise.regulation_score [0,100] The Predictwise regulation model measures the probability that an
individual is supportive of government regulation. The model was
built off opinions on environmental, workplace, financial, food, and
drug safety regulations. The score ranges from 0-100, with 0 meaning
an individual is not supportive of government regulation, and 100
meaning an individual is fully supportive of government regulation.

52.96 53.25
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Table 11: Pre-assignment covariates (continued). Descriptions from TARGETSMART documentation.

Mean by group

Variable name Variable support Description Zi=1 Zi=0

predictwise.religious_freedom_score [0,100] The Predictwise religious freedom score measures the probability that
an individual supports religious freedom to deny equal rights. This
model was based on attitudes about conflict between discrimination
and religious freedom—for example, adoption rights for LGBT couples,
and denying procedures at religious hospitals. The score ranges from
0-100, with 0 meaning and individual is not supportive of religious
freedom denying equal rights, and 100 meaning an individual is
extremely supportive of religious freedom denying equal rights.

38.97 39.06

predictwise.taxes_score [0,100] The Predictwise taxes score measures the probability that an individ-
ual supports tax raises. The model was based off attitudes regarding
taxation on the wealthy and middle class, inheritance taxes, corporate
taxes and capital gains taxes. The score ranges from 0-100, with 0
meaning an individual does not support tax raises, and 100 meaning
an individual fully supports tax raises.

71.94 71.72

predictwise.traditionalism_score [0,100] The Predictwise traditionalism score measures the probability that
in individual is a traditionalist. The model was built based off ques-
tions about corporal punishment in school and at home, generational
divides, morality, and religious depth. The score ranges from 0-100,
with 0 meaning an individual is not at all traditionalist, and 100
meaning an individual is extremely traditionalist.

44.57 44.75

predictwise.trust_in_institutions_score [0,100] The Predictwise trust in institutions score measures the probability
that an individual trusts institutions. The model was built off questions
about media, political government, and the intelligence community.
The model ranges from 0-100, with 0 meaning an individual does not
trust institutions at all, and 100 meaning an individual is extremely
trusting in institutions.

52.38 52.36
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